Защита салона автомобиля от съема информации

Автор работы: Пользователь скрыл имя, 06 Февраля 2014 в 11:14, курсовая работа

Краткое описание

Для несанкционированного добывания информации в настоящее время ис-пользуется широкий арсенал технических средств, из которых малогабаритные технические средства отражают одно из направлений в развитии современных разведывательных технологий. Выполняемые в портативном, миниатюрном и сверхминиатюрном виде, эти средства аккумулируют в себе новейшие научные, технические и технологические достижения электроники, акустики, оптики, радио-техники и других наук. Такие средства находят широкое применение, как в дея-тельности правоохранительных органов, так и иностранных технических разведок, в подпольном информационном обеспечении незаконных экономических, финансовых и криминальных организаций

Содержание

1 Введение 5
2 Технические каналы утечки акустической информации 6
2.1 Воздушные технические каналы утечки информации 6
2.2 Вибрационные технические каналы утечки информации 7
2.3 Электроакустические технические каналы утечки информации 7
2.4 Оптико-электронный технический канал утечки информации 8
2.5 Параметрические технические каналы утечки информации 8
3 Методы защиты информации 10
3.1 Пассивные методы защиты 11
3.1.2 Электромагнитное экранирование 11
3.2 Активные методы защиты 18
3.2.1 Виброакустическая маскировка 18
3.2.2 Обнаружение и подавление диктофонов 27
4 Заключение 30
Список использованных источников 31

Вложенные файлы: 1 файл

kursovik.doc

— 623.50 Кб (Скачать файл)

Физическая сущность электромагнитного экранирования, рассматриваемая с точки зрения теории электромагнитного поля и теории электрических цепей, сводится к тому, что под действием источника электромагнитной энергии на стороне экрана, обращенной к источнику, возникают заряды, а в его стенках - токи, поля которых во внешнем пространстве по интенсивности близки к полю источника, а по направлению противоположны ему, и поэтому происходит взаимная компенсация полей.

Ниже приведены материалы, используемые при экранировании:

  • металлические материалы (в том числе сеточные материалы и фольговые материалы);
  • металлизация поверхностей;
  • стекла с токопроводящим покрытием;
  • специальные ткани;
  • радиопоглощающие материалы;
  • токопроводящие краски;
  • электропроводный клей;

В таблице 3.1 приведены значения эффективности экранирования для реальных замкнутых экранов.

 

Таблица 3.1 - Значения ЭЭ для реальных замкнутых экранов, дБ

Материал экрана

Диапазон частот, МГц

0,15-3

3-30

30-300

300-3000

3000-10000

Сталь листовая:

         

   - сварка сплошным швом

>100

>100

>100

>100

>100

   - сварка точечным швом, шаг 50 мм

70

50

-

-

-

   - болтовое соединение, шаг 50 мм

75

60

-

-

-

Жесть (фальцем):

         

   - пайка непрерывная

100

100

100

100

100

   - точечная пайка,  шаг 50 мм

100

80

60

50

40

   - без пайки

100

100

60

50

40

Сетка металлическая, ячейка 1 мм

80

60

50

40

25

Фольга, склейка внахлест

100

80

80

70

60

Токопроводящая краска, Rs=6 Ом

70

40

30

40

40

Металлизация, расход металла 0,3 кг/м2

100

80

60

50

40

Экранирование смотровых  и оконных проемов:

         

   - штора или  створка из металлической сетки с ячейкой 1-1,5 мм

70

60

60

40

40

   - металлическая  сетка с ячейкой до 2 мм

70

60

40

20

-

   - стекло с токопроводящей поверхностью

70

30

-

30

30


 

При рассмотрении процесса экранирования автомобиля необходимо учитывать влияние корпуса автомобиля, выполняющего уже роль электромагнитного экрана.

Для инженерных расчетов используют упрощенные выражения, полученные при анализе многих конструкций  экранов различного назначения. Рассчитаем эффективность экранирования автомобиля без использования дополнительных средств.

Расчет эффективности  экранирования для электрически толстых ( ) металлических экранов производится по формуле:

 

(3.9)


где - удельное сопротивление материала;

       - длина волны;

       - волновое сопротивление электрического (магнитного) поля;

       - эквивалентный радиус экрана;

       - наибольший размер отверстия (щели).

Волновое сопротивление  электрического и магнитного полей  начисляют по формулам:

 

(3.10)

(3.11)


где - характеристическое сопротивление воздуха электромагнитной волне, равное .

Эквивалентный радиус экрана в свою очередь высчитывается  по формуле:

 

(3.12)


 

При расчете эффективности  экранирования автомобиля будем  исходить из того, что корпус автомобиля выполнен из стали. Это соответствует действительности для некоторых моделей.

Рассчитаем эквивалентный  радиус. Будем считать, что длина  салона автомобиля равна 2,6 метрам, высота 1,2 метру, а ширина 1.5 метра.

Тогда:

 

 

Толщину корпуса примем равной 5 мм. Для повышения эффективности экранирования необходимо уменьшить размеры возможных щелей в корпусе автомобиля. Я принял ее равной 2 мм.

Глубина проникновения  рассчитывается по формуле:

(3.13)


где - относительная магнитная проницаемость материала экрана.

Для стали относительная  магнитная проницаемость равна 180. На основе этих данных можно вычислить эффективность замкнутого экрана сделанного из такого же материала, что и автомобиль.

Расчеты будут проводится по формулам (3.9)-(3.13). Зависимость эффективности экранирования от частоты приведена на рисунке 3.1

По рисунку определяем, что на частоте 1 ГГц эффективность  экранирования данного экрана составляет 123 дБ, а на частоте 2 ГГц – 115 дБ.

 

Рисунок 3.1 – Зависимость  эффективности экранирования стального  экрана от частоты, дБ.

Для получения реальной эффективности необходимо учитывать  наличие в автомобиле окон, которые нельзя заменить эквивалентным стальным экраном. Поэтому необходимо рассчитать эффективность экранирования эквивалентного стеклянного экрана.

При расчете экранирования  окон необходимо учитывать снижение светопропускания. В качестве решения данной проблемы можно предложить следующие методы:

  1. вкрапление в стекло металлической сетки;
  2. стекла с токопроводящим покрытием.

И эти методы находятся  в бурном развитии. Например, для нанесения токопроводящего покрытия используют вакуумные установки многослойного магнетронного напыления. Принцип работы этих установок основан на методе «бомбардировки» поверхности материала-подложки атомами или молекулами осаждаемого вещества, создающими на поверхности тонкий (от нескольких нанометров), ровный и чрезвычайно прочный слой покрытия. Используемые установки позволяют наносить одно- и многослойные покрытия из Ti, Ni, Al, In, Si, Zr, Cu, Co, Fe и др. материалов (до трех видов за один цикл) на стекло, керамику, металл и ряд пластмасс, и делать это со производительностью (для пятислойных покрытий) 200 дм2/час.

В качестве примера можно  привести систему  «Forster shielding» обладающей эффективностью 60 дБ в полосе частот от 1кГц до 1ГГц. При этом экраны обладают отличной проницаемостью света.

Рассмотрим экранирование  стекол с помощью металлической  сетки. Расчет будем проводить для сетки изготовленной из медной проволоки диаметром 0.05 мм с размером ячейки 2 мм. Оптическая проницаемость такой сетки составляет 85%[10].

Расчет эффективности  сеточного экрана проводится по формуле:

 

(3.14)


где - эквивалентная толщина сетки, м;

       - диаметр провода сетки, мм;

       - шаг сетки, мм.

 

Результаты вычисления представлены на рисунке 3.2.

Рисунок 3.2 – Зависимость эффективности экранирования медной сетки от частоты, дБ.

 

Из рисунка видно, что  на частоте 2 ГГц эффективность экранирования равна 51 дБ.

Таким образом эффективность  наиболее слабого звена электромагнитного  экрана автомобиля обеспечивает эффективность экранирования 51 дБ в полосе частот от 1МГц до 2 ГГц.

Для повышения эффективности  экранирования салона возможно покрытие внутренней стороны корпуса автомобиля тонким слоем алюминия. При этом мы получаем многослойный экран эффективность экранирования которого вычисляется по формуле:

(3.15)


Где и - эффективности экранирования первого и второго экранов;

        и - коэффициенты отражения слоев.

Используя формулу 3.7 можно  вычислить коэффициент отражения для каждого слоя. Коэффициент отражения равен:

 

(3.16)


где - эффективность экранирования за счет отражения электромагнитной волны от границы раздела сред.

Рассчитаем коэффициенты отражения для каждого слоя. Для этого сначала рассчитаем значения характеристических сопротивлений диэлектрика и металла.

Характеристическое сопротивление  воздуха[4]:

 

Ом

 

Характеристическое сопротивление  металла[4]:

(3.17)


где - удельная проводимость.

Для алюминия характеристическое сопротивление равно:

 Ом

Тогда зависимость отражения от  границы воздух-алюминий от частоты будет иметь вид, показанный на рисунке 3.4. Теперь необходимо рассчитать  зависимость коэффициента отражение от границы алюминий-сталь. Характеристическое сопротивление стали равно:

 Ом

 

Теперь по формуле 3.15 вычислим итоговую эффективность экранирования  для двухслойного экрана. Результаты вычислений представлены на рисунке 3.3

Как видно из рисунка  можно добиться высокой эффективности  экранирования салона автомобиля. Также следует отметить, хорошие экранирующие свойства бронированных автомобилей. Это объясняется тем, что в основном для бронирования автомобилей используют стальные листы толщиной от 3 до 10 мм.

К недостаткам электромагнитного  экранирования можно отнести  громоздкость и соответственно высокую стоимость работ. Также, как видно из рисунков, эффективность экранирования экспоненциально уменьшается с увеличением частоты, и учитывая развитие радиоэлектроники необходимо отметить опасность выхода за границ безопасных частот.

 

 

 

Рисунок 3.3 – Зависимость эффективности экранирования двухслойного экрана от частоты, дБ.

Для избежания этого существуют два решения: увеличение толщины экрана и разработка и применение новых материалов. Но увеличение толщины экрана ограничено техническими показателями автомобиля. В качестве новых материалов для экранирования можно привести "METALTEX 450" - гибкий, воздухопроницаемый материал с высоким уровнем защиты против электрических, электромагнитных волн и полей. Эффективная защита от утечки информации по электромагнитным полям, ослабление (демпфирование) сигналов свыше 80 дБ в широкой полосе частот (0,01 - 10 000 МГц).

3.2 Активные методы защиты

3.2.1 Виброакустическая маскировка

 

Виброакустическая маскировка заключается  в создании маскирующих  акустических и вибрационных помех средствам разведки. Акустическая маскировка эффективна  для защиты речевой информации от утечки по всем каналам, вибрационная – только по виброакустическому.

В настоящее время  создано большое количество различных  систем активной виброакустической маскировки, успешно используемых для подавления средств перехвата речевой информации. К ним относятся: системы «Заслон», «Барон», «Порог-2М», «Фон-В», «Шорох», VNG-006, ANG-2000, NG-101, «Эхо» и т.д.

Для формирования виброакустических  помех применяются специальные  генераторы на основе электровакуумных, газоразрядных и полупроводниковых радиоэлементов. На практике наиболее широкое применение нашли генераторы шумовых колебаний. Наряду с шумовыми помехами в целях активной акустической маскировки используют «Речеподобные» помехи, хаотические последовательности импульсов и т.д.

Роль оконечных устройств, осуществляющих преобразование электрических колебаний в акустические колебания речевого диапазона частот, обычно выполняют малогабаритные широкополосные акустические колонки, а осуществляющих преобразование электрических колебаний в вибрационные - вибрационные излучатели. Акустические колонки систем зашумления устанавливаются в салоне в местах наиболее вероятного размещения средств акустической разведки, а вибрационные излучатели крепятся на стеклах. В состав типовой системы виброакустической маскировки входят шумогенератор и от 6 до 12...25 вибрационных излучателей (пьезокерамических или электромагнитных).

При организации акустической маскировки необходимо помнить, что  акустический шум может создавать дополнительный мешающий для владельца автомобиля фактор (дискомфорт) и раздражающе воздействовать на нервную систему человека, вызывая различные функциональные отклонения, приводить к быстрой утомляемости. Степень влияния мешающих помех определяется санитарными нормативами на величину акустического шума. В соответствии с нормами для учреждений величина мешающего шума не должна превышать суммарный уровень 45 дБ [5].

Информация о работе Защита салона автомобиля от съема информации