Расчет тяговых характеристик тепловозов с электрической передачей и электровозов

Автор работы: Пользователь скрыл имя, 09 Октября 2013 в 13:06, курсовая работа

Краткое описание

Целью курсовой работы является изучение физических процессов,, происходящих в колесно-моторном блоке (КМБ) тепловоза при преобразовании электрической энергии в механическую, и создании силы тяги. На основании рассчитанных параметров тягового электродвигателя (ТЭД) строится тяговая характеристика тепловоза с нанесением на ней ограничений по конструктивным параметрам и условиям сцепления колеса с рельсом.

Содержание

Введение
1. Типы электрических передач локомотивов
1.1 Электрическая передача постоянного тока
1.2 Электрическая передача переменно-постоянного тока
1.3 Электрическая передача переменного тока
1.4 Описание с изображением основных узлов тяговой характеристики тепловозов с гидромеханической и гидравлической передачей мощности.
2. Физические основы преобразования энергии в электрических машинах.
2.1 В тяговом двигателе постоянного и переменного тока
2.2. В генераторах постоянного и переменного тока
2.3. В трансформаторах
3. Создание силы тяги локомотива
4. Назначение и конструкция тяговых электродвигателей тепловозов
4.1. Назначение тяговых электродвигателей
4.2. Конструкция основных узлов и элементов тягового электрического двигателя тепловоза
5.Расчетная часть курсового проекта.
5.1. Определение параметров ТЭД на номинальном режиме
5.2. Расчет характеристики намагничивания ТЭД при различных режимах нагрузки и возбуждения
5.3.Расчет и построение внешней характеристики тягового генератора тепловоза
5.4. Расчет и построение электромеханических и электрических тяговых характеристик ТЭД с учетом параметров КМБ
5.5. Расчет и построение тяговой и токовой характеристик с учетом ограничений
6. Электроподвижной состав.
6.1. Электровозы постоянного тока
6.2. Электровозы переменного тока
6.3 Электропоезда
7. Выводы

Вложенные файлы: 1 файл

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА РФ.docx

— 868.16 Кб (Скачать файл)

, или в процентах  100% (7.2)

Отсюда  (7.3)

Частота ЭДС, которая индуцируется вращающимся магнитным полем  статора в обмотке ротора, зависит  от скольжения и определяется по формуле

, (7.4)

где f1 – частота напряжения питающей сети

2.2 Принцип действия  синхронного генератора

Постоянный магнитный  поток, создаваемый током в обмотке  возбуждения ротора, замыкается через  сердечник ротора, воздушный зазор  и сердечник статора. При вращении ротора каким-либо приводом с некоторой  частотой n с этой же частотой будет вращаться и магнитное поле ротора. Пересекая проводники трехфазной статорной обмотки, это поле индуцирует в ней трехфазную ЭДС, изменяющуюся с частотой:

, (7.7)

где р – число пар полюсов ротора

При подключении к обмотке  статора трехфазной нагрузки проходящий по обмотке статора ток создает  вращающееся магнитное поле статора, частота вращения которого определяется по формуле (7.1). Число пар полюсов  ротора и число пар полюсов  статорной обмотки одинаково, поэтому  из сравнения формул (7.1) и (7.7) видно, что n0 = n, т.е. частота вращения поля статора равна частоте вращения ротора. Поэтому машина называется синхронной.

2.3 Трансформаторы

Назначение и  устройство. Трансформатором называется статическое электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение – понижающих.

Принцип действия. Принцип действия трансформатора, основанный на явлении взаимоиндукции, рассмотрим на примере однофазного двухобмоточного трансформатора (рис. 6.3). Если на первичную обмотку с числом витков W1 подать переменное напряжение u1, то протекающий по обмотке переменный ток i1 создаст в магнитопроводе переменный магнитный поток Ф, пронизывающий обе обмотки трансформатора и индуцирующий в них переменные ЭДС е1 и е2. Если ко вторичной обмотке подключить нагрузку, то под действием ЭДС е2 в цепи вторичной обмотки будет протекать переменный ток i2. Отношение ЭДС, равное отношению числу витков первичной и вторичной обмоток называется коэффициентом трансформации трансформатора:

(6.1)

Пренебрегая незначительными  падениями напряжения в обмотках, отношение ЭДС можно заменить отношением напряжений:

(6.2)

Следовательно, у повышающих трансформаторов k<1, а у понижающих трансформаторов k>1.

Преобразование энергии  в трансформаторах происходит с  незначительными потерями, и подводимая к трансформатору полная мощность приблизительно равна отдаваемой полной мощности . Откуда , т.е.

(6.3)

Следовательно, по обмотке  ВН протекает ток примерно в k раз меньший, чем по обмотке НН.

Учитывая это, обмотку  ВН, имеющую большее число витков, выполняют проводом меньшего сечения, чем обмотку НН

3. Создание силы  тяги локомотива

В локомотивах образование  движущей силы (силы тяги) происходит вследствие взаимодействия колесных пар с рельсами за счет вращающего момента, создаваемого тяговым двигателем (рис.3.1). К колесной паре 1 приложен вращающий момент Мк, который передается от двигателя 2 через зубчатый редуктор, состоящий из шестерни 3 и зубчатого колеса 4. Шестерня 3 закреплена на валу ТЭД, а зубчатое колесо 4 - на оси колесной пары.

Вращающий момент на колесной паре равен

Мкд.μ.ηз, Н.м, (3.1)

где Мд - момент на валу двигателя, Н.м;

μ - передаточное число зубчатой передачи;

ηз - коэффициент полезного действия зубчатой передачи.

Момент Мк обычно представляют в виде пары сил F1 и F2 с плечом Dк/2, одна из которых (F1) приложена к ободу колеса в точке касания с рельсом (точка А), а другая (F2) - к оси колесной пары. Поскольку силы F1 и F2, действующие на колесную пару, равны по величине и противоположно направлены, то они уравновешивают друг друга и не вызывают поступательного движения колес.

Очевидно, что поступательное движение колесной пары будет возможно в том случае, если скомпенсировать  действие силы F1 какой-либо дополнительной силой и нарушить тем самым баланс сил F1 и F2. Подобная ситуация возникает, когда колесная пара (далее для сокращения - колесо) контактирует с рельсом и прижата к нему силой тяжести Gт.

Рис.3.1. Образование силы тяги. 1 - колесная пара; 2 - тяговый электродвигатель; 3 - шестерня; 4 - большое зубчатое колесо

Сила тяжести Gт, приходящаяся на одну ось локомотива, приложена к колесу и через точку контакта А действует на рельс (рис.6.1). Реакция рельса на колесо Gр по III закону Ньютона равна значению силы тяжести Gт по модулю и противоположна ей по направлению. Указанные силы, действующие на колесо в вертикальной плоскости, уравновешивают друг друга.

В горизонтальной плоскости  к ободу колеса приложена сила F1, которая, как и сила тяжести Gт, через точку контакта А действует на рельс (сила F1 направлена вдоль поверхности рельсов, поэтому в случае их ненадежного крепления имеет место явление, известное как "угон пути"). Реакция рельса Fр по III закону Ньютона равна силе F1 по модулю и противоположна ей по направлению. Поэтому силы F1 и Fр, действующие на колесо в точке А, уравновешивают друг друга. Сила F2 остается неуравновешенной, что вызывает качение колеса и его поступательное движение относительно рельса.

Следовательно, движущей силой (силой тяги) колесной пары является сила F2, развиваемая тяговым двигателем. Для удобства расчета ее значений, на практике в качестве силы тяги условились считать силу реакции рельса Fр, равную по величине силам F1 и F2 [11]. При этом значения сил определяют, рассматривая равенство моментов

Fр.Dк/2=Mк,

из которого следует, что F2 = Fр = 2. Мк/Dк = 2. Мд.μ.ηз/Dк, Н.

Отметим, что данное уравнение  было использовано при построении электротяговых характеристик локомотивов для  расчета силы тяги ТЭД на ободе  колеса Fкд

Поскольку сила Fр действует по касательной к колесу, ее называют касательной силой тяги. Для локомотива в целом касательную силу тяги Fк можно определить как

Fк = nос.Fр = m.Fкд, Н, (3.2)

где nос - число движущих осей локомотива;

m - количество тяговых электродвигателей на локомотиве.

Таким образом, качение колесной пары по рельсу происходит, если к ней  приложена пара сил F1 и F2 (вращающий момент от тягового двигателя) и сила F1 уравновешена реакцией рельса Fр. Сформулируем особенности силы Fр как касательной силы тяги:

сила Fр, будучи силой реакции, возникает только под действием силы F1, равна ей по модулю и поэтому пропорциональна величине вращающего момента ТЭД Мд;

реакция Fр, будучи по природе силой трения, возникает при наличии контакта колеса с рельсом и силы, прижимающей их друг к другу (силы тяжести); уровень силы Fр не может превосходить некоторой максимальной величины, которую называют силой сцепления колес с рельсами Fсц.

Итак, касательная сила тяги - это сила реакции рельса на колесо, возникающая под действием внешнего вращающего момента и ограниченная силой сцепления колеса с рельсом.

При увеличении вращающего момента на колесе Мк касательная сила тяги Fр, равная силе тяги ТЭД Fкд, возрастает вплоть до уровня, соответствующего силе сцепления Fсц (зона I на рис.3.2). Дальнейшее повышение момента Мк (зона II) приводит к нарушению условия качения колеса F1=Fр. Сила F1, равная Fкд, не уравновешивается силой Fр, равной Fсц. В результате происходит срыв сцепления и начинается боксование, то есть проскальзывание колеса относительно поверхности рельса, при котором частота вращения якоря ТЭД nд резко увеличивается.

Зависимость касательной  силы тяги Fр от силы тяги ТЭД Fкд и силы сцепления колеса с рельсом Fсц

Рис.3.2.

- касательная сила тяги  Fр;

- сила тяги, развиваемая  ТЭД, Fкд=F1 ;

- сила сцепления колеса  с рельсом Fсц


Боксование приводит к интенсивному износу рабочих поверхностей колеса и рельса, разрушению вращающихся деталей якоря ТЭД под действием центробежных сил, возникновению кругового огня на коллекторе ТЭД и другим опасным явлениям. Чтобы не допускать их, установлены технические условия устойчивого движения локомотива, которые описываются неравенством [11]

Fкmax ψо.Pсц, (3.3)

где Fкmax - максимально допустимая касательная сила тяги локомотива;

ψо - потенциальный (максимальный) коэффициент сцепления;

Pсц - сцепной вес локомотива (вес, приходящийся на движущие колесные пары и участвующий в создании силы тяги).

Pсц = 9,81.nос.2П, кН, (3.4)

где 2П - осевая нагрузка локомотива, т (исходные данные).

Неравенство (3.3) выражает основной закон локомотивной тяги: для обеспечения устойчивости управляемого движения локомотива окружные усилия на ободах движущих колес, создаваемые тяговыми двигателями, не должны превосходить силу сцепления колес с рельсами.

Коэффициент сцепления, а следовательно и сила сцепления, являются случайными величинами, на которые оказывают влияние многочисленные факторы: качество ремонта и содержания локомотивов, метеорологические условия поездки, текущее состояние пути и др. Для локомотивов одной серии при одинаковой скорости движения разброс возможных значений коэффициента сцепления относительно его среднего значения достигает 50% .

Поэтому для обеспечения  устойчивости локомотивов против боксования устанавливают так называемый расчетный коэффициент сцепления ψк, величина которого меньше потенциального ψо. При этом сила тяги по сцеплению составляет

Fксц= ψк.Pсц, кН. (3.5)

Расчетный (нормативный) коэффициент  сцепления локомотива ψк определяют экспериментальным путем и задают так, чтобы обеспечить практически приемлемую надежность движения полновесных поездов (поездов расчетной массы) по тяжелым подъемам при плохих условиях сцепления.

4. Назначение и  конструкция тяговых электродвигателей  локомотивов

4.1. Назначение  тяговых электродвигателей

Тяговый электродвигатель (ТЭД) локомотива предназначен для преобразования электрической энергии в механическую, необходимую для вращения колесной пары.

Источником электроэнергии для движения тепловоза - автономного локомотива - служит дизель-генераторная установка (рис.3.1). Механическая энергия вращения коленчатого вала дизеля Д сообщается тяговому генератору ТГ и преобразуется в электрическую. Электрическая энергия от генератора поступает в тяговые электрические двигатели ТЭД, которые кинематически связаны с движущими колесными парами КП и приводят их во вращение.

На неавтономных локомотивах, которыми являются электровозы, для питания тяговых двигателей используется электроэнергия, вырабатываемая на электростанциях и передаваемая ТЭД по линиям электропередачи через тяговые подстанции и контактную сеть. Будучи подключенным к электростанции, то есть практически неограниченному источнику энергии, электровоз может развивать повышенную мощность, ограниченную только мощностью ТЭД. Поэтому мощность электровоза почти в 2 раза больше, чем тепловоза равной массы.

Рис.4.1. Схема преобразования энергии на тепловозе 

На всех локомотивах привод колесной пары от ТЭД осуществляется через зубчатый редуктор колесно-моторного  блока. Наиболее распространенным в  настоящее время типом подвешивания ТЭД у грузовых тепловозов и электровозов является опорно-осевое подвешивание, при котором ТЭД с одной  стороны опирается на ось колесной пары через моторно-осевые подшипники, а с другой стороны - на раму тележки  через комплект пружин [7]. Неизменное расстояние между центрами вала двигателя  и оси колесной пары называют централью  Ц (рис.4.2).

Так как ТЭД служит для  преобразования электрической энергии  в механическую, то он входит в состав как электрической, так и механической части локомотива.

4.2. Конструкция  основных узлов и элементов  тягового электрического двигателя  тепловоза

ТЭД постоянного тока состоит  из неподвижного статора: остова с расположенными на его внутренней поверхности главными и добавочными полюсами - и вращающегося якоря (ротора). Вал якоря опирается  на подшипниковые узлы, размещенные  в статоре (рис.4.3).

Конструктивно двигатель  образован следующими сборочными единицами: магнитная система (в корпусе  которой также закреплены щеткодержатели со щетками), якорь, подшипниковые щиты с якорными подшипниками, моторно-осевые подшипники и др..

Магнитная система  двигателя состоит из станины (остова), четырех главных и четырех добавочных полюсов.

Остов является магнитопроводом двигателя; он отлит из углеродистой стали и имеет восьмигранную или круглую форму. С торцов остова расположены расточки для подшипниковых щитов. На остове имеются два прилива (носика) для опоры ТЭД на тележку через пружинную подвеску. С противоположной стороны остов имеет расточки под моторно-осевые подшипники. В верхней части остова со стороны коллектора находится вентиляционный люк, через который подводится воздух, охлаждающий обмотки и детали двигателя.

Рис.4.2. Схема колесно-моторного  блока локомотива с опорно-осевым подвешиванием ТЭД

Главный полюс состоит из стального сердечника и катушки, намотанной из шинной меди в два слоя (плашмя). Витки катушки изолированы друг от друга асбестовой электроизоляционной бумагой.

Информация о работе Расчет тяговых характеристик тепловозов с электрической передачей и электровозов