Автор работы: Пользователь скрыл имя, 12 Июня 2013 в 15:50, реферат
На судах гидроприводы наиболее широко применяются в рулевых устройствах. В последние годы гидроприводы рулевых устройств стали применяться не только на больших судах, где необходимо обеспечить момент на баллере, равный десяткам и сотням тонна-сила-метров, но и на малых судах.
Все увеличивающееся использование гидроприводов на судах обусловлено их преимуществами:
гидропривод имеет меньшие массы и габаритные размеры, чем электропривод;
использование в гидроприводах в качестве рабочей жидкости минеральных масел создает хорошие условия смазки, что обеспечивает надежность и долговечность механизма;
Cудовой гидропривод рулевой машины
На судах гидроприводы наиболее широко применяются в рулевых устройствах. В последние годы гидроприводы рулевых устройств стали применяться не только на больших судах, где необходимо обеспечить момент на баллере, равный десяткам и сотням тонна-сила-метров, но и на малых судах.
Все увеличивающееся использование гидроприводов на судах обусловлено их преимуществами:
гидропривод имеет меньшие массы и габаритные размеры, чем электропривод;
использование в гидроприводах в качестве рабочей жидкости минеральных масел создает хорошие условия смазки, что обеспечивает надежность и долговечность механизма;
применение минерального масла позволяет иметь также малые сопротивления трения в подвижных деталях, что обеспечивает бесшумную и плавную работу без вибраций;
гидропривод может
обеспечить широкое бесступенчатое
передаточное число и легкое реверсирование
без обязательного изменения
направления вращения механизмов, обеспечивающих
реверсирование (это исключает необходимость
преодоления больших
гидропривод способен осуществлять более частые изменения направления перекладки, чем электропривод;
гидропривод способен работать в затопленном состоянии, что повышает живучесть судна;
гидропривод может быть составлен из различных стандартных и унифицированных деталей и узлов, что уменьшает его стоимость;
использование в
гидроприводах насосов с
(0,9-:-0,95) обеспечивает
высокую экономичность их
От механического гидравлический привод выгодно отличается тем, что при его компоновке и монтаже нет необходимости обеспечивать строгое взаимное расположение его отдельных узлов и деталей. Насосы электрогидравлических рулевых машин приводят их в действие с помощью давления, создаваемого в цилиндрах гидравлического рулевого привода машины в целях перекладки руля. В электрогидравлических рулевых машинах находят применение насосы регулируемой, а также и постоянной подачи. Насосы регулируемой подачи (НРП) могут быть выполнены как радиально-поршневыми, так и аксиально-поршневыми.
Эти насосы должны:
поддерживать неизменный напор, развиваемый насосом при регулируемой подаче, колеблющейся от нуля до максимального ее значения;
не давать пульсирующей струи жидкости;
быстро изменять направления подачи;
быть экономичными.
Большее распространение
имеют радиально-поршневые
Применение в
рулевых машинах насосов
Отечественная промышленность
выпускает также насосы типа 11P марок
11Р-0,5; 11Р-1,5; 11Р-2,5; 11Р-5; 11Р-10; 11Р-20; 11Р-30; 11Р-50,
отличающиеся от насосов типа 11Д
отсутствием устройств
Рис. 1. Четырехплунжерная электрогидравлическая рулевая машина
Насос состоит из блока цилиндров 1, вращаемых электродвигателем, внутри которого могут поступательно двигаться вращающиеся вместе с цилиндрами скалки 2, связанные с башмаками 3, скользящими по регулировочному кольцу 4. Последнее имеет цапфы 5 и 6, удерживающие его от вращения и позволяющие перемещать его в горизонтальном направлении в корпусе 7.
Внутри блока цилиндров находится камера, разделенная неподвижной перегородкой 8 на две полости, которые сообщаются при помощи отверстий 5 и /Ос трубопроводом, соединенным с цилиндрами. Телемотором, действующим на цапфы 5 и 6, можно устанавливать регулировочное кольцо 4 в любое положение по отношению к центру вращения. Если кольцо 4 расположить концентрично к звездообразным цилиндрам, то они, вращаясь, будут увлекать за собой скалки, но последние, двигаясь вместе с системой цилиндров, не имеют поступательного движения, и подача насоса будет равна нулю (насос в положении в на рис. 1). Если сдвинуть регулировочное кольцо влево (положение а), то в этом случае при вращении по часовой стрелке в цилиндрах, расположенных выше оси цапф, происходит нагнетание через отверстие 9. Поршни нижних цилиндров, прижимаемые к башмакам центробежной силой, в это время будут через отверстие 10 всасывать жидкость. Рабочий эксцентриситет (смещение регулировочного кольца) для насосов некоторых серийных судов составляет ±13 мм, а для РЭГ4 — до ±24 мм. Если кольцо 4 передвинуть вправо, то поршни верхних цилиндров будут осуществлять всасывание через отверстие 9, а в нижних цилиндрах — нагнетание жидкости через отверстие 10. Чем дальше будет смещено регулировочное кольцо от своего среднего положения, тем больше будет подача насоса, тем быстрее происходит перекладка руля.
Четырехцилиндровый
плунжерный привод позволяет при
эксплуатации машины осуществлять различные
варианты переключения и производить
замену уплотнений любых цилиндров
без выключения рулевой машины. На
рис. 2 приведена схема гидравлической
рулевой машины с лопастным приводом
типа РЭГ ОВИМУ-7. Эта машина разработана
научно-исследовательским
Питание привода осуществляется лопастным насосом Г12-14 (ЛЗФ-70) постоянной подачи 73 л/мин с частотой вращения 1000 об/мин и мощностью 5,6 кВт,
Гидравлическая рулевая машина работает при давлении рабочей жидкости 40 кгс/см2. Она состоит из рабочего цилиндра 16, лопастного насоса 21 с электродвигателем, золотниково-распределительного устройства 7, сдвоенного перепускного клапана 15 привода, предохранительного клапана 8 насоса, пружинного буферного колпака 20, бака для рабочей жидкости 9 и системы рычагов управления.
При среднем положении
золотника 11, как показано на рис. 2,
работа насоса 21 вызовет лишь циркуляцию
рабочей жидкости по кольцу в направлении,
указанном пунктирными
Рис. 2. Схема РЭГ ОВИМУ-7
Как видно из рисунка, на вертикальном валу рабочего цилиндра закреплены лопасти, жестко соединенные со ступицей сектора ранее имевшейся на судне паровой рулевой машины.
При нагнетании жидкости в две диаметрально противоположные полости цилиндра вал с крыльями и баллер 18 руля 17 поворачиваются в данном случае против часовой стрелки. Поворот баллера вызовет перемещение рычага 12 сервомотора (обратная связь), при этом рычаг 14 поворачивается и смещает золотник до тех пор, пока закроются окна 10 золотниковой коробки, а кулачковое устройство 13 станет в первоначальное положение. Давление рабочей жидкости на кольцевую поверхность разгрузочного золотника 4 совпадает с направлением действия пружин, в результате чего этот золотник сместится и откроет канал а, вследствие чего возобновится циркуляция жидкости по кольцу/указанному пунктирными стрелками. В результате руль останется в переложенном на борт положении и показания аксиометра будут соответствовать ранее заданному углу перекладки. Можно проследить по схеме, что при вращении штурвала в левую сторону баллер повернется по часовой стрелке.
Фиксатор 6 с пружиной 5 предназначен для уменьшения ошибки между показаниями аксиометра и действительным положением пера руля. Фиксатор не позволяет золотнику 4 открыть окно а до полного закрытия золотником // окон 10, т. е. до установления руля на заданный угол. В рабочем положении системы, когда происходит перекладка руля и золотник 4, закрывая окно а, находится в правом положении, фиксатор под действием пружины находится в нижнем положении, вследствие чего кольцевая торцевая поверхность золотника 4 не испытывает давления, так как объем над ней соединен каналом К с отливной полостью. К концу маневра, когда в связи с прикрытием золотником И окон 10 давление в системе возрастает, фиксатор поднимается, преодолев давление пружины 5, и соединяет каналы полости высокого давления золотникового устройства с каналами, идущими к кольцевой поверхности, обеспечивая повышение давления на торцевую кольцевую поверхность золотника 4. Сила, образовавшаяся от давления на эту поверхность и совпадающая с ней по направлению действия пружины золотника 4, сместит его в первоначальное (допусковое) положение; окно а откроется, и давление в системе снизится.
Устройство фиксатора обеспечивает также разгрузку нагнетательной сети трубопровода при недопустимом повышении давления, выполняя в этом случае функции предохранительного клапана, хотя схемой предусматривается специальный предохранительный клапан 8, который срабатывает в случае заклинивания золотника 4 (в эксплуатации случаев заклинивания не наблюдалось)
Рулевая машина может работать и без фиксатора 6. Если он выключен (поднят), то уменьшается точность отработки машиной заданных углов, однако нормы Регистра соблюдаются.
Между рычагом управления 14 и баллером 18 в системе сервомоторов предусмотрена жесткая пружина 19, в нормальных условиях не работающая, но являющаяся демпфером при резких поворотах руля от ударов зыби. В последнем случае схемой предусматривается возможность перепуска рабочей жидкости из нагнетательных полостей рабочего цилиндра 16 во всасывающие окна через сдвоенный перепускной предохранительный клапан 15, который срабатывает при увеличении расчетной нагрузки на руль в 2,5 раза, т. е. при давлении 100 кгс/см2.
Описанная конструкция
золотников распределительного устройства
обеспечивает начало перекладки руля
при перемещении
Распределительный золотник 11 обеспечивает полное открытие окон 10 при повороте штурвала на 1,5 оборота. При повороте штурвала на 40—60° окна открываются на 1—1,5 мм и насос перекачивает жидкость в цилиндр со скоростью 15 м/с. Чувствительность установок может быть повышена за счет уменьшения ширины окна а при определенном изменении золотника. В последней модели рулевой машины ее пуск осуществляется за 0,1 с.
Сервомотор обеспечивает
работу машин и в том случае,
когда в процессе перекладки руля
удар волны (или другое внешнее воздействие)
заставит сработать механизм возврата
золотника, так как при этом руль
несколько отклонится и своим
движением посредством
Элементы гидравлической системы рулевых машин связаны между собой трубопроводами. Масляный трубопровод состоит из главного (соединяющего насосы с цилиндрами привода баллера через клапанные коробки) и вспомогательных трубопроводов, а также трубопровода манометров. Рулевые машины снабжены комплектом контрольно-измерительных приборов, обеспечивающих нормальную эксплуатацию.
Руление машины всех
групп предназначены для
Ряд машин серии «Р» включает электрогидравлическне рулевые машины 12 типоразмеров и 7 модификаций (машины на два руля). При этом 9 типоразмеров ряда заменяют 36 типоразмеров электрогидравлических и электрических рулевых машин, находившихся до последнего времени в эксплуатации.
Система управления новыми рулевыми машинами электрическая дистанционная с электрической связью и обеспечивает три вида управления: автоматическое (авторулевой), сдмдатвчшше, (следящая система), простое дистанционное.
Электропривод насосов рулевых машин работает на переменном токе 380 В или постоянном токе 220 В.
Система дистанционного управления представляет собой сочетание электрических, механических и гидравлических элементов и наиболее полно отвечает требованиям эксплуатации. Исполнительный механизм системы управления в рулевых машинах первой группы воздействует на распределительный золотник и установлен на раме насосного агрегата; в рулевых машинах второй и третьей групп исполнительный механизм регулирует наклон цилиндрового блока насоса регулируемой подачи и размещается непосредственно на корпусе насоса.
При разработке типизированной
конструкции