Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 13:15, реферат
Если анализировать степень научной разработанности лазерных технологий, сразу можно сказать, что данное явление исследовали как отечественные, так и зарубежные ученые, есть много разработок и в Интернете. Однако, все эти исследования, описанные в периодике, учебниках и монографиях, не создают полной и четкой картины, особенно на сегодняшний день.
Кристалл рубина выращивается в виде круглого цилиндра. Для лазера обычно используют кристаллы размером: длина L = 5 см, диаметр d = 1 см. Ксеноновая лампа и кристалл рубина помещаются в эллиптическую полость с хорошо отражающей внутренней поверхностью. Чтобы обеспечить попадание на рубин всего излучения ксеноновой лампы, кристалл рубина и лампа, имеющая также форму круглого цилиндра, помещаются в фокусы эллиптического сечения полости параллельно ее образующим. Благодаря этому на рубин направляется излучение с плотностью, практически равной плотности излучения на источнике накачки.
Один из концов рубинового кристалла срезан так, что от граней среза обеспечивается полное отражение и возвращение луча обратно. Такой срез заменяет одно из зеркал лазера. Второй конец рубинового кристалла срезан под углом Брюстера. Он обеспечивает выход из кристалла рубина без отражения луча с соответствующей линейной поляризацией. Второе зеркало резонатора ставится на пути этого луча. Таким образом, излучение рубинового лазера линейно поляризовано.
o Газовый лазер.
Для таких лазеров в качестве активного вещества используют либо смесь газов, либо вещество, находящееся в парообразном состоянии. Газовая среда облегчает получение непрерывного стимулированного излучения, поскольку для перевода вещества в возбужденное состояние требуется меньшая энергия. Впервые в качестве активного вещества применялась смесь гелия и неона. Атом гелия в процессе газового разряда возбуждается электронами тока и переходит с основного уровня 1 на уровень 2. При столкновении атомов гелия с атомами неона последние также возбуждаются и совершают переход на один из четырех верхних подуровней. В связи с тем, что перераспределение энергии при столкновении двух частиц происходит с минимальным изменением общей внутренней энергии, то атомы неона переходят в основном именно па уровень 2, а не на уровень 3 или 4. Вследствие этого создается перенаселенность верхнего уровня 2. При переходе атомов неона с уровня 2 на один из подуровней 3 и с уровня 3 на уровень 4 происходит излучение. Поскольку уровень 2 состоит из четырех, а уровень 3 - из десяти подуровней, то теоретически имеются более тридцати возможных переходов. Однако только пять переходов дают стимулированное излучение, которое сосредоточено на длинах волн: 1,118; 1,153; 1,160; 1,199; 1,207 мкм.
o Гелий-неоновый лазер.
Активной средой является газообразная смесь гелия и неона. Генерация осуществляется за счет переходов между энергетическими уровнями неона, а гелий играет роль посредника, через который энергия передается атомам неона для создания инверсной заселенности.
Неон, в принципе, может генерировать лазерное изучение в результате более 130 различных переходов. Однако наиболее интенсивными являются линии с длиной волны 632,8 нм, 1,15 и 3,39 мкм. Волна 632,8 нм находится в видимой части спектра, а волны 1,15 и 3,39 мкм - в инфракрасной.
При пропускании тока через гелий-неоновую смесь газов электронным ударом атомы гелия возбуждаются до состояний 23S и 22S, которые являются метастабильными, поскольку переход в основное состояние из них запрещен квантово-механическими правилами отбора. При прохождении тока атомы накапливаются на этих уровнях. Когда возбужденный атом гелия сталкивается с невозбужденным атомом неона, энергия возбуждения переходит к последнему. Этот переход осуществляется очень эффективно вследствие хорошего совпадения энергии соответствующих уровней. Вследствие этого на уровнях 3S и 2S неона образуется инверсная заселенность относительно уровней 2P и 3P, приводящая к возможности генерации лазерного излучения. Лазер может оперировать в непрерывном режиме. Излучение гелий-неонового лазера линейно поляризовано. Обычно давление гелия в камере составляет 332 Па, а неона -- 66 Па. Постоянное напряжение на трубке около 4 кВ. Одно из зеркал имеет коэффициент отражения порядка 0,999, а второе, через которое выходит лазерное излучение, - около 0,990. В качестве зеркал используют многослойные диэлектрики, поскольку более низкие коэффициенты отражения не обеспечивают достижения порога генерации.
o С02-лазер с замкнутым объемом.
Молекулы углекислого газа, как и другие молекулы, имеют полосатый спектр, обусловленный наличием колебательных и вращательных уровней энергии. Используемый в CO2 - лазере переход дает излучение с длиной волны 10,6 мкм, т. е. лежит в инфракрасной области спектра. Пользуясь колебательными уровнями, можно несколько варьировать частоту излучения в пределах примерно от 9,2 до 10,8 мкм. Энергия молекулам CO2 передается от молекул азота N2, которые сами возбуждаются электронным ударом при прохождении тока через смесь.
Возбужденное состояние молекулы азота N2 является метастабильным и отстоит от основного уровня на расстоянии 2318 см -1, что весьма близко к энергетическому уровню (001) молекулы CO2. Ввиду метастабильности возбужденного состояния N2 при прохождении тока число возбужденных атомов накапливается. При столкновении N2 с CO2 происходит резонансная передача энергии возбуждения от N2 к CO2. Вследствие этого возникает инверсия заселенностей между уровнями (001), (100), (020) молекул CO2. Обычно для уменьшения заселенности уровня (100), который имеет большое время жизни, что ухудшает генерацию при переходе на этот уровень, добавляют гелий. В типичных условиях смесь газов в лазере состоит из гелия (1330 Па), азота (133 Па) и углекислого газа (133 Па).
При работе CO2 - лазера происходит распад молекул CO2 на СО и О, благодаря чему активная среда ослабляется. Далее СО распадается на С и О, а углерод осаждается на электродах и стенках трубки. Всё это ухудшает работу СO2-лазера. Чтобы преодолеть вредное действие этих факторов в закрытую систему добавляют пары воды, которые стимулируют реакцию СО + О?? CO2.
Используются платиновые электроды, материал которых является катализатором для этой реакции. Для увеличения запаса активной среды резонатор соединяется с дополнительными емкостями, содержащими CO2, N2, Не, которые в необходимом количестве добавляются в объём резонатора для поддержания оптимальных условий работы лазера. Такой закрытый CO2-лазер, в состоянии работать в течение многих тысяч часов.
o Проточный СО2-лазер.
Важной модификацией является проточный СО2-лазер, в котором смесь газов CO2, N2, Не непрерывно прокачивается через резонатор. Такой лазер может генерировать непрерывное когерентное излучение мощностью свыше 50 Вт на метр длины своей активной среды.
o Неодимовый лазер.
Название может ввести в заблуждение. Телом лазера является не металл неодим, а обычное стекло с примесью неодима. Ионы атомов неодима беспорядочно распределены среди атомов кремния и кислорода. Накачка производятся лампами-молниями. Лампы дают излучение в пределах длин волн от 0,5 до 0,9 мкм. Возникает широкая полоса возбужденных состояний. Совершенно условно она изображена пятью черточками. Атомы совершают е переходы на верхний лазерный уровень. Каждый переход дает разную энергию, которая превращается в колебательную энергию всей «решетки» атомов.
Лазерное излучение, т.е. переход на пустой нижний уровень, помеченный цифрой 1, имеет длину волны 1,06 мкм.
Показанный пунктиром переход с уровня 1 на основной уровень «не работает». Энергия выделяется в виде некогерентного излучения.
o Т-лазер.
Во многих практических приложениях важную роль играет СO2-лазер, в котором рабочая смесь находится под атмосферным давлением и возбуждается поперечным электрическим полем (Т-лазер). Поскольку электроды расположены параллельно оси резонатора, для получения больших значений напряженности электрического поля в резонаторе требуются сравнительно небольшие разности потенциалов между электродами, что дает возможность работать в импульсном режиме при атмосферном давлении, когда концентрация CO2 в резонаторе велика. Следовательно, удается получить большую мощность, достигающую обычно 10 МВт и больше в одном импульсе излучения продолжительностью менее 1 мкс. Частота повторения импульсов в таких лазерах составляет обычно несколько импульсов в минуту.
o Газодинамические лазеры.
Нагретая до высокой температуры (1000--2000 К) смесь CO2 и N2 при истечении с большой скоростью через расширяющееся сопло сильно охлаждается. Верхний и нижний энергетический уровни при этом термоизолируются с различной скоростью, в результате чего образуется инверсная заселенность. Следовательно, образовав на выходе из сопла оптический резонатор, можно за счет этой инверсной заселенности генерировать лазерное излучение. Действующие на этом принципе лазеры называются газодинамическими. Они позволяют получать очень большие мощности излучения в непрерывном режиме.
o Лазеры на красителях.
Красители являются очень сложными молекулами, у которых сильно выражены колебательные уровни энергии. Энергетические уровни в полосе спектра располагаются почти непрерывно. Вследствие внутримолекулярного взаимодействия молекула очень быстро (за времена порядка 10-11--10-12 с) переходит на нижний энергетический уровень каждой полосы. Поэтому после возбуждения молекул через очень короткий промежуток времени на нижнем уровне полосы Е1 сосредоточатся все возбужденные молекулы. Они далее имеют возможность совершить излучательный переход на любой из энергетических уровней нижней полосы. Таким образом, возможно излучение практически любой частоты в интервале, соответствующем ширине нулевой полосы. А это означает, что если молекулы красителя взять в качестве активного вещества для генерации лазерного излучения, то в зависимости от настройки резонатора можно получить практически непрерывную перестройку частоты генерируемого лазерного излучения. Поэтому на красителях создаются лазеры с перестраиваемой частотой генерации. Накачка лазеров на красителях производится газоразрядными лампами или излучением других лазеров,
Выделение частот генерации достигается тем, что порог генерации создается только для узкой области частот. Например, положения призмы и зеркала подбираются так, что в среду после отражения от зеркала благодаря дисперсии и разным углам преломления возвращаются лишь лучи с определенной длиной волны. Только для таких длин волн обеспечивается лазерная генерация. Вращая призму, можно обеспечить непрерывную перестройку частоты излучения лазера на красителях. Генерация осуществлена со многими красителями, что позволило получить лазерное излучение не только во всем оптическом диапазоне, но и на значительной части инфракрасной и ультрафиолетовой областей спектра.
3. Практическое
использование оптических
Прежде всего, следует отметить, что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой мощностью, может обратимо изменять физические характеристики вещества, что приводит к различным нелинейно-оптическим явлениям.
Лазер дает возможность осуществлять сильную концентрацию световой мощности в пределах весьма узких частотных интервалов: при этом возможна плавная перестройка частоты. Поэтому лазеры применяются для получения и исследования оптических спектров веществ. Лазерная спектроскопия отличается исключительно высокой степенью точности (высоким разрешением). Лазеры позволяют также осуществить избирательное возбуждение тех или иных состояний атомов и молекул, избирательный разрыв определенных химических связей. В результате оказывается возможным инициирование конкретных химических связей, управление развитием этих реакций, исследование их кинетики. Пикосекундные лазерные импульсы дали начало исследованиям целого ряда быстропротекающих процессов в веществе и, в частности, в биологических структурах. Отметим, например, фундаментальные исследования процессов фотосинтеза. Эти процессы весьма сложны и, к тому же, протекают крайне быстро - в пикосекундной временной шкале. Использование сверхкоротких световых импульсов дает уникальную возможность проследить за развитием подобных процессов и моделировать отдельные их звенья. Роль лазеров в фундаментальных научных исследованиях исключительно велика.
При обсуждении практических применения лазеров обычно выделяют два направления. Первое направление связывают с применениями, в которых лазерное излучение (как правило, достаточно высокой мощности) используется для целенаправленного воздействия на вещество. Сюда относят лазерную обработку материалов (например, сварку, термообработку, резку, пробивание отверстий), лазерное разделение изотопов, применение лазеров в медицине и т.д. Второе направление связывают с так называемым информативным применением лазеров - для передачи и обработки информации, для осуществления контроля измерений.
3.1 Применение
лазерного луча в
Оптические квантовые генераторы и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается применение лазеров для сварки, обработки и разрезания металлических и диэлектрических материалов и деталей в приборостроении, машиностроении и в текстильной промышленности.
Начиная с 1964 года малопроизводительное механическое сверление отверстий стало заменяться лазерным сверлением. Термин лазерное сверление не следует понимать буквально. Лазерный луч не сверлит отверстие: он его пробивает за счет интенсивного испарения материала в точке воздействия. Пример такого способа сверления - пробивка отверстий в часовых камнях, которая сейчас уже является обычным делом. Для этой цели применяются твердотельные импульсные лазеры, например, лазер на стекле с неодимом. Отверстие в камне (при толщине заготовки около 0,1 - 0.5 мм.) пробивается серией из нескольких лазерных импульсов, имеющих энергию около 0,1 - 0,5 Дж. и длительностью около 10-4 с. Производительность установки в автоматическом режиме составляет 1 камень в секунду, что в 1000 раз выше производительности механического сверления.
Лазер используется и при изготовлении сверхтонких проволок из меди, бронзы, вольфрама и других металлов. При изготовлении проволок применяют технологию протаскивания (волочения) проволоки сквозь отверстия очень малого диаметра. Эти отверстия (или каналы волочения) высверливают в материалах, обладающих особо высокой твердостью, например, в сверхтвердых сплавах. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстия в алмазе (алмазные фильеры). Только они позволяют получить проволоку диаметром всего 10 мкм. Однако, на механическое сверление одного отверстия в алмазе требуется 10 часов(!). Зато совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов. Как и в случае с пробивкой отверстий в часовых камнях, для сверления алмаза используются твердотельные импульсные лазеры.
Лазерное сверление широко применяется при получении отверстий в материалах, обладающих повышенной хрупкостью. В качестве примера можно привести подложки микросхем, изготовленные из глиноземной керамики. Из-за высокой хрупкости керамики механическое сверление выполняется на “сыром” материале. Обжигают керамику уже после сверления. При этом происходит некоторая деформация изделия, искажается взаимное расположение высверленных отверстий. При использовании “лазерных сверл” можно спокойно работать с керамическими подложками, уже прошедшими обжиг.
Информация о работе Дать полное раскрытие темы «Физические основы лазерных технологий