Деление ядер

Автор работы: Пользователь скрыл имя, 22 Мая 2013 в 19:00, реферат

Краткое описание

В наше время, с каждым годом возрастают потребности человечества в энергии. На получение необходимого количества энергии затрачивается примерно 30% производственных усилий человека. Совершенно очевидно, что полный запас энергии в природе в соответствии с законом сохранения энергии не меняется.

Вложенные файлы: 1 файл

Деление ядер.doc

— 88.50 Кб (Скачать файл)

Таким образом  мы приходим к необходимости изучения того, при каких условиях возможна цепная реакция деления в ЯР на тепловых нейтронах (именно такие реакторы обычно применяются для энергетических целей). Нужно отметить, что мы будем рассматривать реакторы, использующие естественный U238, обогащенный U235. Кроме того для простоты будем считать, что активная зона реактора - бесконечная и гомогенная.

 

3.2 Основные  характеристики цепной реакции

Рассмотрим  соотношения, характеризующие протекание цепной реакции деления.

 

3.2.1 Коэффициент размножения на быстрых  нейтронах

Пусть в среде  есть N быстрых нейтронов, они будут  взаимодействовать с ядрами среды, в том числе и с ядрами U238, те из них которые имеют энергию выше порога деления (1 МэВ) могут вызывать деление урана и образование новых быстрых нейтронов. При этом их энергия будет меньше порога деления.

Коэффициент размножения  на быстрых нейтронах m - число нейтронов ушедших под порог деления U238 на один быстрый нейтрон (появившийся в результате деления ядер U235).

Ясно, что величина m тем больше, чем больше доля U238 в топливе. Можно оценить, что mmax = 1.35 (если доля U238 равна 100%). Для тепловых реакторов m = 1.01 - 1.03.

 

3.2.2 Вероятность избежать радиационного захвата

Пусть в среде  есть N нейтронов, энергия которых  меньше порога деления U238. За счет рассеяния но ядрах среды они теряют свою энергию и попадают в область энергии, в которой находятся гигантские резонансы сечения захвата U238. Введем величину j - вероятность избежать радиационного захвата.

j тем больше, чем быстрее нейтронам в процессе замедления удастся преодолеть резонансную область. j уменьшается при увеличении доли ядер U238 в среде. В гомогенном реакторе j » 0.65, а в гетерогенном j » 0.93.

 

3.2.3 Коэффициент теплового использования

Пусть в среде  есть N тепловых нейтронов, тогда в  процессе диффузии часть из них захватится в топливе. Обозначим долю захваченных  в топливе нейтронов q. Ясно, что коэффициент теплового использования можно увеличить, используя гетерогенную структуру активной зоны реактора.

 

3.2.4 Количество испускаемых U235 быстрых нейтронов

Пусть в топливе  поглотилось N тепловых нейтронов. Ясно, что не всякое поглощение приводит к делению и испусканию новых  быстрых нейтронов. Введем величину uтэф равную количеству вторичных нейтронов деления на один тепловой нейтрон, поглощенный в топливе. Ясно, что uтэф тем больше, чем выше доля U235 в топливе.

 

3.3 Жизненный  цикл нейтронов

Рассмотрим  жизненный цикл нейтронов в тепловом ЯР, активная зона которого бесконечна и гомогенна.

Пусть на некотором  этапе цепной реакции в рассматриваемой  среде присутствует N1 быстрых нейтронов деления 1 поколения. За счет взаимодействия с ядрами U238 под порог деления этих ядер (1 МэВ) уйдет m N1 нейтронов (m - коэффициент размножения на быстрых нейтронах).

В результате рассеяния  на ядрах среды эти нейтроны будут  замедляться и попадут в область  промежуточных энергий. Миновать эту  область, избежав поглощения ядрами U238 удастся m j N1 нейтронам (j - вероятность избежать радиационного захвата).

Часть из этих нейтронах, которые теперь стали тепловыми, захватится в топливе. Количество захваченных  в топливе нейтронов будет равно  m j q N1 (q - коэффициент теплового использования).

Некоторые из нейтронов, захваченных в топливе инициируют деление ядер U235 и появление новых быстрых нейтронов. Количество нейтронов второго поколения N2 = uтэф m j q N1.

Итак, мы видим, что реакция  действительно является самоподдерживающейся и циклической. Цикл жизни нейтронов схематично представлен на рис. 4. На данной схеме, в отличие от вышеприведенного описания рассмотрение начинается со стадии тепловых нейтронов.

Можно вывести  коэффициент размножения нейтронов  в бесконечной гомогенной среде:

K¥ = Ni+1/Ni = uтэф m j q  - формула 4-х сомножителей.

Для конечных сред можно ввести коэффициент

Kэф = uтэф m j q P, где P - вероятность избежать утечки.

 

На этом рассмотрение физических основ протекания цепной ядерной реакции в ЯР можно завершить. Используя описанную цепную ядерную реакцию, можно переводить энергию из формы энергии связи частиц в ядре в кинетическую энергию движения частиц, то есть в тепло. Как уже отмечалось ранее основную трудность представляет собой не организация цепной реакции, а получение чистых делящихся веществ и другие технические и технологические нюансы ядерной энергетики.

 

 

 

 

 

 

 

 

 

 

 

 

 

Л И  Т Е Р А Т У Р А

 

1. Рудик А. П. Физические основы ядерных реакторов. М.: Атомиздат, 1980.

 

2. Климов А. Н. Ядерная физика и ядерные реакторы. М.: Атомиздат, 1971.

 

3. Нигматулин Н. Н., Нигматулин Б. Н., Ядерные энергетические установки. М.: Энергоатомиздат, 1986.

 

4. Емельянов И. Я. и др. Конструирование ядерных реакторов. М.: Энергоатомиздат, 1982

 

5. Камерон И. Ядерные реакторы. М.: Энергоатомиздат, 1987

 

6. Шихов С. Б., Троянский В. Б. Элементарная теория яднрных реакторов. М.: Атомиздат, 1978

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Деление ядер