Естественная и искусственная радиоактивность

Автор работы: Пользователь скрыл имя, 06 Июня 2012 в 21:23, реферат

Краткое описание

В мои цели входит более подробно познать материал, связанный с радиацией (которая делится на естественную и искусственную), с помощью радиометра измерить уровень радиации в разных диапазонах частот, составить таблицы и сравнить их результаты с санитарными нормами. Насколько я знаю, СНИПы – часто изменяемые нормы и сравнивать с ними результаты будет довольно сложно, но я хочу это сделать и постараюсь получить наиболее точные результаты сравнения.

Содержание

Введение.
Часть 1.История открытия радиоактивности.
Часть 2. Физика ядра.
Глава 1.
- Строение атомного ядра.
- Ядерные силы.
- Энергия связи ядра.
- Изотопы.
Глава 2.
- Закон радиоактивного распада.
- Виды радиоактивных излучений и распадов.
Глава 3.
- Естественная радиоактивность.
- Искусственная радиоактивность.
- Ядерное оружие.
- Ядерный реактор.
- Аварии.
Часть 3. Воздействие малых доз радиации на живой организм.
Часть 4. Методы регистрации частиц.
- Газоразрядный счетчик.
- Счетчик Гейгера - Мюллера.
- Пузырьковая камера.
- Камера Вильсона.
- Дозиметр и радиометр.
Заключение.
Список используемой литературы.

Вложенные файлы: 1 файл

«Естественная и искусственная радиоак.doc

— 867.50 Кб (Скачать файл)

Часть 2. Физика ядра.

    Глава 1.

      Строение  атомного ядра. 

      После опытов Резерфорда по рассеянью  частиц (ядер гелия) стало понятно, что модель атома «булка с изюмом» несправедлива. Так же, на основе своих опытов, учёный выдвинул теорию о планетарном строении атома. Она заключается в том, что есть ядро малых размеров (заряженное положительно), вокруг которого вращаются электроны*. Так как суммарные заряды протонов и электронов равны, а заряд нейтрона равен нулю, то атом не имеет заряда, т.е. он нейтрален. Это и есть привычная для нас модель атома. Радиус атома приблизительно равен 10-10 м, а масса – 10-22 г. Почти вся масса атома сосредоточенна в плотном(приблизительно 18 . 1017 г/см3) ядре.    

      Итак, атомное ядро. Вскоре после открытия нейтрона, была выдвинута гипотеза о протонно-нейтронном строении ядра. Согласно этой идее все ядра состоят из протонов** и нейтронов***. Вместе они называются нуклеотидами.    

      

      *Электрон - отрицательно заряженная частица, находящаяся в оболочках атомного ядра. Химические свойства атома определяются находящимися вокруг ядра электронами, особенно принадлежащим внешним оболочкам.

      **Протон - положительно заряженная частица, находящаяся в ядре атома. Имеет массу, равную массе нейтрона, и в 1840 раз тяжелее электрона. Его заряд равен по модулю заряду электрона.

      ***Нейтрон – нейтрально заряженная частица, входящая в состав атомного ядра. Нейтрон состоит из  2-х частиц: протона и электрона, но в ядре их разделить нельзя. Но если ”изъять” один нейтрон из ядра, то он распадётся на составляющие через 10 мин. Т.к. масса электрона очень мала, то масса нейтрона приблизительно равна массе протона. [1] 

      Число протонов в атомном ядре равно  зарядовому числу Z. Число нейтронов равно N. Их сумму называют массовым числом и обозначают буквой A:

      A=Z+N     (1) 

      Масса ядра измеряется в атомных единицах массы. 1а.е.м. приблизительно равна массе протона (массе ядра атома гелия)  => A=1а.е.м. . количество нуклеотидов. Т.е. A- это приблизительная масса ядра в а.е.м..

      Одна  из основных характеристик атомного ядра – его электрический заряд. Электрический заряд атома равен произведению элементарного электрического заряда e на порядковый номер Z химического элемента в таблице Д. И. Менделеева:

      q=Ze     (2) 
 

      Не  менее важным параметром является масса атомного ядра. Массы атомов и атомных ядер измеряются с помощью масс-спектрографа. Положительные ионы исследуемого вещества разгоняются электрическим полем.Специальное устройство пропускает - на щель только ионы с некоторой определенной скоростью V. Через щель пучок ионов попадает в вакуумную камеру. Эта камера находится между полюсами магнита; вектор магнитной индукции перпендикулярен вектору скорости ионов. Как известно, на электрически заряженную частицу, движущуюся со

      

     Рис.1 Масс-спектрограф        скоростью V в поперечном магнитном поле с индукцией В, действует сила Лоренца, направленная под прямым углом к векторам скорости заряда и индукции магнитного поля; модуль этой силы равен F=qUВ. Под действием силы Лоренца ион движется по окружности, радиус которой R определяется соотношением mU²/R = qUB.

      Описав  полуокружность, все ионы одинаковой массы попадают в одно место фотографической  пластинки. По известным значениям  индукции магнитного поля, скорости, заряда иона и радиуса окружности определяется масса иона:

      mU2/R=qUB => m=qUBR/U2 =>

      m=qBR / U.    (3) 

Ядерные силы. 

      Так как атомные ядра достаточно устойчивы, то протоны и нейтроны должны удерживаться внутри ядра какими-то силами, причем очень  большими. Что же это за силы? К началу двадцатого века ученым было известно только два вида сил: гравитационные и электромагнитные. Совершенно точно можно сказать, что это не гравитационные силы. Они для этого слишком слабы. Расчеты показывают, что сила гравитационного притяжения, действующая между двумя протонами в ядре, примерно в 1036 раз меньше силы кулоновского отталкивания между ними. Устойчивость ядра также не может быть объяснена электромагнитными силами из-за того, что между одноименно заряженными протонами действует электрическое отталкивание. А нейтроны вообще лишены электрического заряда. Следовательно, между нуклонами действуют какие-то другие силы. Эти силы назвали ядерными.

      Свойства  ядерных сил изучены достаточно хорошо. Два главных свойства этих сил - их короткодействующий характер и сила. Современные эксперименты позволили установить, что на расстоянии 10-15 м от центра протона ядерные силы примерно в 35 раз больше кулоновских и в 1038 раз больше гравитационных. Однако с увеличением расстояния ядерные силы очень быстро убывают и на расстояниях, больших 1,4*10-15 м, их действием можно пренебречь. 

      Энергия связи ядра. 

      Важную  роль в ядерной физике играет понятие  энергии связи ядра. Энергия связи  позволяет объяснить устойчивость ядер, узнать, какие процессы ведут  к выделению ядерной энергии. Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить большую работу, т. е. сообщить ядру огромное количество энергии.

      Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основании закона сохранения энергии* можно также утверждать, что энергии связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика.

      Точные  измерения масс атомных ядер показали, что масса любого ядра, содержащего  Z протонов и N нейтронов, меньше суммы масс такого же числа свободных протонов и нейтронов:

      mя<Zmp+Nmn     (4) 

Существует так называемый дефект масс. Он равен (с обратным знаком) энергии связи нуклонов в ядре. Его смысл заключается в том, что разность масс

Δm= Zmp + Nmn — mя     (5) 

положительна. К примеру, для гелия масса  ядра на 0,75% меньше суммы масс двух протонов и двух нейтронов. Соответственно для  одного моля гелия Δm =    0,03 г.

Чем больше дефект масс, тем выше Eсв, следовательно, тем устойчивее ядро. Дефект масс измеряется в а.е.м..

      Уменьшение  массы ядра при образовании его  из нуклонов означает то, что при  этом уменьшается и энергия этой системы нуклонов на величину энергии связи Есв:

Eсв=Δmc²= (Zmp+Nmn-mя)c²     (6) 

      

      *Закон  сохранения энергии утверждает, что энергия не может создаваться или исчезать, но может только превращаться из одной формы в другую. 
 

      Но  куда  же при  этом  деваются  энергия  Eсв и масса Δm?

      При образовании ядра из частиц, эти  частицы за счет действия ядерных  сил устремляются с огромным ускорением друг к другу. Излучаемые при этом γ-кванты как раз обладают энергией Eсв и массой

Δm = Eсв / c²     (7) 

      О том, как велика энергия связи, можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, что и сгорание 1,5—2 вагонов каменного угля. 

      Изотопы. 

      В результате наблюдения большого числа  радиоактивных превращений выяснилось, что существуют вещества, совершенно одинаковые по своим химическим свойствам, но распадающиеся совершенно по-разному. Их никак не удавалось разделить. На этом основании физик Содди в 1911 г. высказал теорию о существовании элементов с одинаковыми химическими свойствами, но различных по своей радиоактивности. Эти элементы нужно помещать в одну и ту же клетку периодической системы Менделеева. Содди назвал их изотопами (т. е. занимающими одинаковые места).

      Предположение Содди подтвердилось год спустя, когда Томсон произвёл точные измерения массы ионов неона методом отклонения их в электрических и магнитных полях. Томсон обнаружил, что атомы неона бывают двух видов. Большая часть атомов имеет относительную массу, равную 20. Но есть незначительное количество атомов с относительной атомной массой 22. В результате относительная атомная масса смеси равна 20,2. Так выяснилось, что атомы, обладающие одинаковыми химическими свойствами, имеют разную массу.

      Изотопы могут быть как радиоактивными, так и стабильными. Чаще всего они радиоактивные. Но встречаются и стабильные ядра. Например дейтерий - нерадиоактивный изотоп водорода, имеющий атомную массу равную двум. Но у водорода есть и другой изотоп – тритий, радиоактивный и имеющий период полураспада 12 лет ( он имеет атомную массу равную трём).

      Существование изотопов доказывает, что заряд атомного ядра определяет не все свойства атома, а лишь его химические свойства и  те физические свойства, которые зависят  от периферии электронной оболочки, например размеры. Масса же атома  и его радиоактивные свойства не определяются порядковым номером в таблице Менделеева.

      Итак, изотопы являются атомами одного и того же элемента (так как у них одинаково число протонов и электронов) с различным числом нейтронов и, следственно, с различным массовым числом. Почти все элементы, найденные в природе, являются смесью различных изотопов. Изотопы определенного элемента имеют одинаковые химические свойства и разные физические свойства (плотность, скорость диффузии и т.д.). 

      Глава 2.

      Закон радиоактивного распада. 

      Резерфорд, исследуя превращения радиоактивных веществ, установил опытным путем, что их активность убывает с течением времени. Для каждого радиоактивного вещества существует определенный интервал времени, в течение которого активность убывает в два раза. Этот интервал носит название периода полураспада. Период полураспада Т — это то время, в течение которого распадается половина наличного числа радиоактивных атомов, т.к. уменьшения активности препарата в два раза можно достичь простым делением его на две равные части.  

          Рис.2    Найдем теперь математическую форму закона радиоактивного распада. Пусть число радиоактивных атомов в начальный момент времени (t=0) равно N0. Тогда по истечении периода полураспада это число будет равно N0/2. Спустя еще один такой же интервал   времени  это число  станет равным 

½ * N0/2 =  N0 /4= N0/22     (8) 

По истечении  времени t = nT, т.е. спустя n периодов полураспада T, радиоактивных атомов останется: 

      N = N0 . 1/2n     (9) 

Поскольку

      N = t/T     (10) 

то

      N = N0 . 2-t / T     (11) 

      Это и есть основной закон радиоактивного распада. По последней формуле находят число нераспавшихся атомов в любой момент времени.

      Период  полураспада основная величина, определяющая скорость радиоактивного распада. Чем меньше период полураспада, тем меньше времени живут атомы, тем быстрее происходит распад. Для разных веществ период полураспада имеет сильно различающиеся значения. Период полураспада радия равен 1600 лет. Есть радиоактивные элементы с периодом полураспада в миллионные доли секунды.

      Чтобы, пользуясь формулой, определить период полураспада, надо знать число атомов N0 в начальный момент времени и подсчитать число не распавшихся атомов N спустя определенный интервал времени.

      Сам закон радиоактивного распада довольно прост. Но физический смысл этого закона понять нелегко. Действительно, согласно этому закону за любой интервал времени распадается одна и та же доля имеющихся атомов (за период полураспада половина атомов). Значит, с течением времени скорость распада нисколько не меняется. Радиоактивные атомы не «стареют». Так, атомы радона, возникающие при распаде радия, имеют одинаковые шансы претерпеть радиоактивный распад как сразу же после своего образования, так и спустя 10 мин после этого. Вероятность распада одного ядра за 1с называется постоянной распада и обозначается λ. Для любого ядра  данного изотопа постоянная распада одинакова,   ядра   различных   изотопов имеют разные постоянные распада.

Информация о работе Естественная и искусственная радиоактивность