Закон всемирного тяготения

Автор работы: Пользователь скрыл имя, 16 Марта 2014 в 17:26, лекция

Краткое описание

Дадим вначале определение закону Всемирного тяготения Ньютона и основным величинам в нем применяемым, а в последствии рассмотрим что именно привело к открытию этого закона, и действительно ли яблоку мы обязану появлению этого величайшего открытия.

Вложенные файлы: 1 файл

Закон всемирного тяготения.docx

— 58.93 Кб (Скачать файл)

Этот вывод можно также подтвердить следующим мысленным экспериментом. Из классической механики следует, что тело сохраняет состояние покоя или равномерного прямолинейного движения, если на него не воздействуют внешние силы.

Рассмотрим тело m, которое находится в состоянии покоя. Это тело является образцом инерциальной массы по определению. Тело m можно считать и гравитационной массой, т.е. массой обладающей гравитационным полем и находящимся в состоянии покоя.

Теперь рассмотрим тело M, которое находится в состоянии покоя на расстоянии R отm. Проведем аналогичные рассуждения и придем к такому же выводу: тело M является гравитационной и инертной массой. Пока мы рассматривали каждое тело в отдельности в наших рассуждениях не возникало противоречий.

При рассмотрении двух тел M и m одновременно реальная картина изменится. ТелаM и m, которые мы считали находящимися в покое, находятся на самом деле в ускоренном движении навстречу друг к другу вследствие их гравитационного взаимодействия. Они являются как и прежде гравитационными массами, но уже не являются инерционными массами, т.к. движутся ускоренно.

Чтобы снять возникшее противоречие необходимо сделать следующие выводы. Во-первых, физическая картина мира состоит из множества гравитационных масс, которые не могут находиться в состоянии покоя и движутся, как правило, равноускоренно. Во-вторых, нет в природе реальных инерциальных масс. Инерциальная масса в физике – это идеальная модель – абстракция.

Любая масса является гравитационной и находится постоянно во взаимодействии с окружающим миром. Только мысленным экспериментом мы можем снять гравитационное поле у массы и после этого ее можно считать инерциальной массой, которая могла бы покоиться или двигаться равномерно и прямолинейно.

С этих позиций все усилия как теоретического, так и практического характера обоснования принципа эквивалентности сводятся к тщетной попытке установления эквивалентности реальной гравитационной и идеальной несуществующей в природе инерциальной массы.

Как известно, с помощью метода Кавендиша была числено определена постоянная γ, входящая в формулу (1) – закона всемирного тяготения. Сегодня эта постоянная известна до четвертого знака. В.Д. Ляховец статье «Проблемы метрологического обеспечения измерений гравитационной постоянной» приводит таблицу:

Таблица 1

Страна

Год

Значение γ, 10–11 м3 (кг·с2)

СССР

1977

6,6745 ± 0,0008

Франция

1972

6,6714 ± 0,0006

США

1982

6,6726 ± 0,0005


 

Как считает В.Д. Ляховец, гравитационная постоянная γ остается до сих пор одной из наименее точно измеренных фундаментальных констант. Из таблицы следует, что хотя относительная погрешность отдельных измерений по странам составляет 10–4, само значение гравитационной определено с погрешностью 10–3. Задача о более точном определении γ еще далеко не снята с повестки дня. Такое положение заставляет задуматься о возможных факторах, влияющих на измеряемое значение гравитационной постоянной. На взгляд многих ученых, одной из них является поправка (4) к формуле (1) – закона всемирного тяготения.

Но действует ли закон всемирного тяготения на субмиллиметровых расстояниях?

Несколько лет назад в физике элементарных частиц появился ряд теоретических конструкций, которые предсказывали аномальные гравитационные эффекты на расстояниях порядка долей миллиметра. Причины таких аномалий могли быть различными: начиная от дополнительных пространственных измерений, компактифицированных на масштабе порядка миллиметра, и заканчивая дилатонными взаимодействиями на тех же масштабах в некоторых струнных теориях. Так или иначе, все эти теории неизбежно предсказывали отклонения от 1/r2 закона всемирного тяготения на субмиллиметровом масштабе.

До настоящего момента закон всемирного тяготения был подтвержден лишь на расстояниях порядка 1 см и больше. Поэтому для проверки необычных предсказаний теорий требовался новый, миниатюрный эксперимент, который бы проверил 1/r2зависимость силы гравитационного притяжения на субмиллиметровых расстояниях. Такой эксперимент был поставлен в Университете Вашингтона в Сиэттле.

Сила гравитационного взаимодействия измерялась с помощью крутильного маятника: металлического кольца, подвешенного на тонкой нити над притягивающей пластиной ("аттрактором"). Распределение масс по поверхности пластины и по кольцу было неоднородным из-за 10 симметрично расположенных отверстий, благодаря чему вращение нижней притягивающей пластины приводило к появлению вращательного момента, действующего на крутильный маятник, а значит, и к его отклонению. Изучая зависимость угла отклонения от времени при различных зазорах между кольцом и пластиной, экспериментаторы могли, таким образом, измерять то, как меняется сила гравитационного притяжения от величины зазора, то есть, от расстояния между притягивающимися поверхностями.

Результаты эксперимента показали, что при толщине зазора вплоть до 218 мкм измеренная зависимость силы от расстояния полностью воспроизводится законом всемирного тяготения. Таким образом, новые гравитационные эффекты на субмиллиметровом масштабе не обнаружены. Кроме того, получены серьезные ограничения на параметры, присутствующие в упомянутых выше теориях.

Список литературы

А. Эйнштейн, А. Инфельд. Эволюция физики. – М.: Наука, 1965.

О.А. Быковский. Проблемы современной физики. – Алма-Ата: Гылым. 1995.

П.И. Бакулин, Э.В. Кононович, В.И. Мороз. Курс общей астрономии. – М.: Наука, 1966.

Ю.А. Рябов. Движение небесных тел. – М.: Наука, 1988.

Периодические издания и в частности «Новости науки»

Для подготовки данной работы были использованы материалы с сайта http://med-lib.ru/ 
 
Читать полностью:http://www.km.ru/referats/A57B096B67A647B59633F6D66FE5A8EC

 


Информация о работе Закон всемирного тяготения