Автор работы: Пользователь скрыл имя, 02 Ноября 2015 в 08:47, контрольная работа
Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже человек слегка радиоактивен, так как во всякой живой ткани присутствует в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального открытия прошло лишь немногим более ста лет.
Введение……………………………………………………………………….......3
Ионизирующее излучение……………………………..…………………..…..4
Виды ионизирующих излучений………………..……………………….....…5
Биологическое действие ионизирующего излучения………………….........8
Защита от ионизирующих излучений……………………………………….10
Ультрафиолетовое излучение………….…………………………….…..…..12
Источники ультрафиолетового излучения……………..………….……......14
Влияние ультрафиолетового излучения на организм человека ……….….15
Применение ультрафиолетового излучения ………………………………..17
Заключение…………………………………………………………………….…18
Список использованной литературы…………………………………………...19
Содержание
Введение…………………………………………………………
Заключение……………………………………………………
Список использованной литературы…………………………………………...
Введение
Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.
Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже человек слегка радиоактивен, так как во всякой живой ткани присутствует в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального открытия прошло лишь немногим более ста лет. В 1896 году французский ученый Анри Беккерель положил несколько фотографических пластинок в ящик стола, придавив их кусками какого-то материала, содержащего уран. Когда он проявил пластинки, то, к своему удивлению, обнаружил на них следы каких-то излучений, которые он приписал урану. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова “радиоактивность”. В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает “испускающий лучи”. И открытие Беккереля, и исследования супругов Кюри были подготовлены более ранним, очень важным событием в научном мире – открытием в 1895 году рентгеновских лучей; эти лучи были названы так по имени открывшего их (тоже, в общем, случайно) немецкого физика Вильгельма Рентгена.
Ионизирующее излучение
Ионизирующее излучение — любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков. Представляет собой поток заряженных и (или) незаряженных частиц. Различают непосредственно ионизирующее и косвенно ионизирующее излучение.
Непосредственно ионизирующее излучение состоит из заряженных частиц, кинетическая энергия которых достаточна для ионизации при столкновении с атомами вещества (α- и β-излучение радионуклидов, протонное излучение ускорителей и т. п.). Косвенно ионизирующее излучение состоит из незаряженных (нейтральных) частиц, взаимодействие которых со средой приводит к возникновению заряженных частиц, способных непосредственно вызывать ионизацию (нейтронное излучение, гамма-излучение). Ионизирующее излучение, состоящее из частиц одного вида одинаковой энергии, называется однородным моноэнергетическим излучением; состоящее из частиц одного вида различных энергий, — немоноэнергетическим излучением; состоящее из частиц различного вида, — смешанным излучением.
Источники ионизирующего излучения бывают естественные (космические лучи, естественно распределенные на Земле радиоактивные вещества, радиоактивные воды и др.) и искусственные (ядерные реакторы, ядерные материалы, ядерное оружие и др.). Является существенным экологическим фактором, воздействующим на все живые организмы.
Воздействие ионизирующего излучения на организм человека в дозах, превышающих естественный радиоактивный фон, представляет опасность: нарушаются обменные процессы, замедляется и прекращается рост тканей, в организме возникают новые химические соединения, не свойственные ему прежде. Количественную оценку воздействия ионизирующего излучения на организм человека проводят по значению экспозиционной дозы, поглощенной и эквивалентной.
Виды ионизирующих излучений
Ионизирующие излучения разделяются на два вида: электромагнитные (γ–излучения, рентгеновское излучение) с очень малой длиной волны и корпускулярные (α–, β–излучения, нейтронное излучение).
γ–излучение обладает небольшой ионизирующей и большой проникающей способностью, оно может быть задержано лишь толстой свинцовой или бетонной плитами. Это коротковолновое, высокочастотное электромагнитное излучение, распространяющееся со скоростью света, возникающее в процессе ядерных реакций или радиоактивного распада.
α–излучение обладает большой ионизирующей и малой проникающей способностью (не проходит через внешний слой кожи). Оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие α– частицы, не попадут внутрь организма через рану, с пищей, с вдыхаемым воздухом. Тогда оно становится чрезвычайно опасным.
β–частицы могут проникать в ткани организма на глубину 12 см, поэтому они одинаково опасны как при непосредственном прикосновении к излучаемому веществу, так и на расстоянии.
Различают естественную (природную) радиоактивность и искусственную (у элементов, получаемых искусственным путем).
Естественные источники ионизирующих излучений.
Природная радиоактивность была открыта в 1898 году физиком Беккерелем при исследовании солей урана. Пьер и Мария Кюри, изучая радиоактивность других химических элементов, открыли ранее не известные элементы, названные радием и полонием, радиоактивность которых во много раз превосходила радиоактивность урана. Основную часть облучения население Земного шара получает от естественных источников радиации земного и космического происхождения. Человек подвергается облучению двумя способами: внешним облучением (радиоактивные вещества находятся вне организма) и внутренним (зараженные пища, воздух, вода).
Наиболее весомыми из всех естественных источников радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) – радон со своими дочерними продуктами. Этот газ ответствен за три четверти годовой дозы облучения, получаемой населением от земных источников радиации, и за половину дозы от всех естественных источников.
Большую часть радона получает человек вместе с вдыхаемым воздухом, особенно в непроветриваемых помещениях. В природе радон встречается в двух основных формах: радон-222 (от распада урана-238) и радон-220 (от распада тория- 232). Но наибольшая часть облучения идет от его дочерних продуктов распада. В зонах с умеренным климатом концентрация радона в закрытых помещениях в 8 раз выше, чем в наружном воздухе. Источником радона являются природный газ, используемый в жилых домах, некоторые источники воды. Наибольшая концентрация радона обнаружена в ванной комнате (в 3 раза выше, чем на кухне, и в 40 раз выше, чем в жилой комнате).
Другими источниками радионуклидов радона служат уголь, сжигаемый в жилых домах или на ТЭЦ, термальные водоемы, фосфатные месторождения (для производства удобрений и как кормовая добавка), а также строительные материалы, изготавливаемые из золы и шлака.
Искусственные источники ионизирующих излучений.
За последнее десятилетие человек создал сотни искусственных радионуклидов и научился использовать энергию атома в различных целях: в медицине, в производстве атомного оружия, для получения энергии, в средствах обнаружения пожаров, для изготовления светящихся циферблатов, для поиска полезных ископаемых и т. д. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом.
Индивидуальные дозы, получаемые людьми разных профессий от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных.
Радиация от техногенных источников контролируется легче, чем от естественных источников, но облучение, связанное с радиоактивными осадками от ядерных взрывов, аварий, также невозможно контролировать, как и облучение, обусловленное космическими лучами или земными источниками.
Биологическое действие ионизирующих излучений.
Исследования биологического действия ионизирующих излучений были начаты сразу после открытия рентгеновского излучения в 1895г. и радиоактивности в 1896г. В 1896 русский физиолог И. Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Особенно интенсивно стали развиваться исследования биологического действия ионизирующих излучений с началом применения атомного оружия в 1945г, а затем и мирного использования атомной энергии.
Для биологического действия ионизирующих излучений характерен ряд общих закономерностей.
1) Глубокие нарушения
жизнедеятельности вызываются
2) Биологическое действие ионизирующих излучений не ограничивается подвергнутым облучению организмом, но может распространяться и на последующие поколения, что объясняется действием на наследственный аппарат организма. Именно эта особенность очень остро ставит перед человечеством вопросы изучения биологического действия ионизирующих излучений и защиты организма от излучений.
3) Для биологического действия ионизирующих излучений характерен скрытый (латентный) период, т. е. развитие лучевого поражения наблюдается не сразу. Продолжительность латентного периода может варьировать от нескольких минут до десятков лет в зависимости от дозы облучения, радиочувствительности организма и наблюдаемой функции. Так, при облучении в очень больших дозах (десятки тыс. рад) можно вызвать «смерть под лучом», длительное же облучение в малых дозах ведёт к изменению состояния нервной и других систем, к возникновению опухолей спустя годы после облучения.
Большое значение имеют также возраст, физиологическое состояние, интенсивность обменных процессов организма, а также условия облучения. При этом, помимо дозы облучения организма, играют роль: мощность, ритм и характер облучения (однократное, многократное, прерывистое, хроническое, внешнее, общее или частичное, внутреннее), его физические особенности, определяющие глубину проникновения энергии в организм (рентгеновское и гамма-излучение проникает на большую глубину, альфа-частицы до 40 мкм, бета-частицы — на несколько мм), плотность вызываемой излучением ионизации (под влиянием альфа-частиц она больше, чем при действии других видов излучения). Все эти особенности воздействующего лучевого агента определяют относительную биологическую эффективность излучения. Если источником излучения служат попавшие в организм радиоактивные Изотопы, то огромное значение для биологического действия ионизирующих излучений испускаемого этими изотопами, имеет их химическая характеристика, определяющая участие изотопа в обмене веществ, концентрацию в том или ином органе, а следовательно, и характер облучения организма.
Биологическое действие ионизирующих излучений пользуются в биологических исследованиях, в медицинской и сельхoз. практике. На биологическом действии ионизирующих излучений основаны Лучевая терапия, Рентгенодиагностика, радиоизотопная терапия.
В сельском хозяйстве
Защита от ионизирующих излучений
В зависимости от типа ионизирующего излучения могут быть разные меры защиты: уменьшение времени облучения, увеличение расстояния до источников ионизирующего излучения, ограждение источников ионизирующего излучения, герметизация источников ионизирующего излучения, оборудование и устройство защитных средств, организация дозиметрического контроля, меры гигиены и санитарии.
В качестве защиты от бета-излучения используют:
ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц; методы и способы, исключающие попадание источников бета-излучения внутрь организма. Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе): увеличение расстояния до источника излучения; сокращение времени пребывания в опасной зоне; экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.); использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения; использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек; дозиметрический контроль внешней среды и продуктов питания. Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации. Укрыться в жилых домах. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз.
Информация о работе Ионизирующие и ультрафиолетовое излучение