Квантово-релятивистская картина мира

Автор работы: Пользователь скрыл имя, 09 Ноября 2014 в 22:32, доклад

Краткое описание

Предпосылками к её созданию были: открытие фотоэффекта, радиоактивности и микромира (мир элементарных частиц). Фотоэффект-испускание веществом электронов под действием электромагнитного излучения (в 1887г. обнаружен Герцем). С точки зрения Максвелла это явление объяснить не удалось, т.к. по его теории электрон должен накопить энергию выхода (иначе потратить на это время), опыт же показал, что этого не происходит. Стало ясно, что необходимы другие теории. Макс Планк предложил квантовую гипотезу-свет излучается не непрерывно, а порциями (квантами). На основе этой гипотезы Эйнштейн создал квантовую теорию света-свет это поток квантов, фотонов, с помощью чего был объяснен фотоэффект-фотон испускается и поглощается как целое, электрон заимствует энергию фотона, поэтому фотоэффект происходит мгновенно.

Вложенные файлы: 1 файл

Квантово-релятивистская картина мира.docx

— 419.25 Кб (Скачать файл)

Квантово-релятивистская картина мира

 

   Предпосылками к её созданию были: открытие фотоэффекта, радиоактивности и микромира (мир элементарных частиц). Фотоэффект-испускание веществом электронов под действием электромагнитного излучения (в 1887г. обнаружен Герцем). С точки зрения Максвелла это явление объяснить не удалось, т.к. по его теории электрон должен накопить энергию выхода (иначе потратить на это время), опыт же показал, что этого не происходит. Стало ясно, что необходимы другие теории. Макс Планк предложил квантовую гипотезу-свет излучается не непрерывно, а порциями (квантами). На основе этой гипотезы Эйнштейн создал квантовую теорию света-свет это поток квантов, фотонов, с помощью чего был объяснен фотоэффект-фотон испускается и поглощается как целое, электрон заимствует энергию фотона, поэтому фотоэффект происходит мгновенно. В конце XIXв., благодаря счастливой случайности, произошло открытие радиоактивности - явления, доказывающего сложный состав атомного ядра. Вспомним, что рентгеновские лучи впервые были получены при столкновениях быстрых электронов со стеклянной стенкой разрядной трубки. Одновременно наблюдалось свечение стенок трубки. Беккерель долгое время исследовал родственное явление - свечение веществ, предварительно облученных солнечным светом. К таким веществам принадлежат, в частности, соли урана, с которыми экспериментировал Беккерель. И вот у него возник вопрос: не появляются ли после облучения солей урана наряду с видимым светом и рентгеновские лучи? Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления пластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое-то излучение, которое, подобно рентгеновскому, пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1896 г., провести очередной опыт ему не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без влияния внешних факторов создают какое-то излучение. Начались интенсивные исследования. После открытия радиоактивных элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри, этим занялся. Резерфорд. Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещался на дно узкого канала в куске свинца. Против канала помещалась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, перпендикулярное к лучу. Вся установка размещалась в вакууме. В отсутствие магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно, точно против канала. В магнитном поле пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем, гораздо больше, чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный - бета-лучей и нейтральный - гамма-лучей. Эти три вида излучения очень сильно отличаются друг от друга по проникающей способности, т.е. по тому, насколько интенсивно они поглощаются различными веществами. Наименьшей проникающей способностью обладают альфа-лучи. Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего альфа-излучению. Гораздо меньше поглощаются при прохождении через вещество бета-лучи. Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают гамма-лучи. По своим свойствам гамма-лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводит на мысль, что гамма-лучи представляют собой электромагнитные волны. С самого начала альфа- и бета-лучи рассматривались как потоки заряженных частиц. Проще всего было экспериментировать с бета-лучам.и, так как они сильно отклоняются как в магнитном, так и в электрическом поле. При исследовании отклонения бета-частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Труднее оказалось выяснить природу альфа-частиц, так как они слабо отклоняются магнитным и электрическим полями. Окончательно эту задачу удалось решить Резерфорду. Он измерил отношение заряда q частицы к ее массе m по отклонению в магнитном поле. Оно оказалось примерно в два раза меньше, чем у протона - ядра атома водорода. Заряд протона равен элементарному, а его масса очень близка к атомной единице массы. Следовательно, у альфа-частицы на один элементарный заряд приходится масса, равная двум атомным единицам массы. Следовательно, на два элементарных заряда приходится четыре атомных единицы массы. Такой же заряд и такую же относительную атомную массу имеет ядро гелия. Из этого следует, что альфа-частица - это ядро атома гелия (или соответственно его времени-ион атома гелия).Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном альфа-распаде образуется гелий. Собирая альфа-частицы внутри специального резервуара на протяжении нескольких дней, Резерфорд с помощью спектрального анализа убедился в том, что в сосуде накапливается гелий (каждая альфа-частица захватывала два электрона и превращалась в атом гелия).

 

Модели строения атома ( Модель Томсона, модель Резерфорда, модель Бора)

 

Не сразу ученые пришли к правильным представлениям о строении атома. Первая модель атома была предложена английским физиком Томсоном, открывшим электрон. По мысли Томсона, положительный заряд атома занимает весь объем атома и распределен в этом объеме с постоянной плотностью. Простейший атом - атом водорода - представляет собой положительно заряженный шар, внутри которого находится электрон. У более сложных атомов в положительно заряженном шаре находится несколько электронов. Однако модель атома Томсона оказалась в полном противоречии с опытами по исследованию распределения положительного заряда в атоме. Опыты, произведенные впервые великим английским физиком Эрнестом Резерфордом, сыграли столь большую роль в понимании строения атома. Из опытов Резерфорда непосредственно вытекает планетарная модель атома. В центре расположено положительно заряженное атомное ядро, в котором сосредоточена почти вся масса атома. В целом атом нейтрален. Поэтому число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Ясно, что покоиться электроны внутри атома не могут, так как они упали бы на ядро. Они движутся вокруг ядра, подобно тому как планеты обращаются вокруг Солнца. Такой характер движения электронов определяется действием кулоновских сил со стороны ядра. Последовательной теории атома Бор, однако, не дал. Он в виде постулатов сформулировал основные положения новой теории. Причем и законы классической физики не отвергались им безоговорочно. Новые постулаты скорее налагали лишь некоторые ограничения на допускаемые классической физикой движения. Успех теории Бора был тем не менее поразительным, и всем ученым стало ясно, что Бор нашёл правильный путь развития теории. Этот путь привел впоследствии к созданию стройной теории движения микрочастиц - квантовой механики. Первый постулат Бора гласит: атомная система может находиться только в особых стационарных, или квантовых, состояниях, каждому из которых соответствует определенная энергия, в стационарном состоянии атом не излучает. Согласно второму постулату Бора при переходе атома из одного стационарного состояния в другое испускается или поглощается квант электромагнитной энергии. Излучение происходит при переходе атома из состояния с большей энергией в состояние с меньшей энергией. Поглощение атомом энергии сопровождается переходом атома из состояния с меньшей энергией в состояние с большей энергией.

 

 

 


Информация о работе Квантово-релятивистская картина мира