Контрольная работа по "Общей энергетике"

Автор работы: Пользователь скрыл имя, 21 Марта 2014 в 19:17, контрольная работа

Краткое описание

Промежуточный перегрев пара применяют для следующих целей: а) повышения степени сухости пара на выходе из турбины; б) повышения работоспособности пара и КПД турбины за счет подвода к пару дополнительной теплоты (еслиt¢0ср>t0ср, здесь t0ср, t'0ср – средняя температура подвода теплоты в цикле с промперегревом и без него соответственно); в) повышения начального давления пара p0 сверх сопряженного его значения. Промежуточный перегрев пара позволяет повысить КПД турбоустановки на 7 % , с учетом потерь теплоты – на 4 %.

Содержание

1.Промежуточный перегрев пара и его применение.
2. Надстройка как метод повышения энергетической
эффективности теплосиловых установок
3. Теплофикация
4. СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

Вложенные файлы: 1 файл

общ энерго.doc

— 135.00 Кб (Скачать файл)

Возникновение идеи централизованного теплоснабжения относится к 80-м годам XIX века. В 1877 году в г. Локпорте в США была сооружена первая установка для централизованного теплоснабжения. Однако в США длительное время (до 1937 года) централизованное теплоснабжение не связывалось с организацией комбинированной выработки электроэнергии, то есть не являлось теплофикацией.

В 1893 году фирма «Сименс-Шуккерт» построила в Гамбурге первую в Германии теплоэлектроцентраль. По теплотрассе длиной около 250 м производилось отопление новой ратуши. Паровые машины имели мощность 100-500 л. с. при рабочем давлении пара 6,5 атм.

В 1900 году была пущена в работу первая районная теплофикационная установка в Германии (г. Дрезден). В 1907 году фирмой AEG была создана первая паровая турбина с отбором пара.

Теплоснабжающие предприятия в Республике Беларусь - одни из крупнейших потребителей органического топлива. Его доля составляет 46 % общего потребления всех видов топлива, расходуемого в стране, что примерно в 2 раза больше, чем топливоемкость электроэнергетики, и соизмеримо с топливоемкостью всех остальных отраслей народного хозяйства.

Анализируя положительные и отрицательные стороны теплофикации, способствуя умножению первых и устранению вторых, представляется целесообразным продолжать наращивать усилия по увеличению поставок тепла от теплофикационных систем на белорусский рынок. Практически это может быть достигнуто путем сочетания двух направлений.

Первое направление - обновление, техническое перевооружение и реконструкция действующих теплофикационных систем. При этом, прежде чем приступить к обновлению действующих систем, следует проверить целесообразность их дальнейшего функционирования в существующем виде. В одних случаях системы от отдельных источников тепла экономично объединять для совместной работы, полностью исключая при этом необходимость содержания резервного энергооборудования.

В других случаях, когда зона охвата города тепловыми сетями велика, а их техническое перевооружение или ремонт требуют неоправданно больших капиталовложений, систему предпочтительно делить.

Второе направление - освоение новых технологий, новых типов энергоисточников прежде всего в населенных пунктах, где нет в настоящее время ТЭЦ и ГРЭС, за счет вытеснения морально и физически стареющих городских котельных путем внедрения новых полностью автоматизированных паросиловых, газотурбинных и парогазовых ТЭЦ.

Для будущего теплофикации очень важно также создать благоприятные для нее экономические условия, которые ориентировали бы производителей и потребителей тепла не на сиюминутные экономические выгоды, связанные с произвольным ценообразованием и тарифами в условиях несовершенного законодательства и налогообложения, а на осуществляемые в интересах национальной экономики и общества в целом экономию ресурсов и защиту окружающей среды.

Существующий технико-экономический анализ работы ТЭЦ совершенно не отвечает технологии производства низкопотенциального сбросного тепла и электрической энергии. Метод ценообразования на сбросное тепло необходимо пересматривать. Ответы на эти и многие другие парадоксы в энергетике кроются в абсурдности существующего метода ценообразования на энергию, в оторванности тарифной политики от технологии производства тепловой и электрической энергии.

Методологические недостатки отечественной тарифной политики.

В существующей тарифной политике на тепловую и электрическую энергию заложено 6 видов логических ошибок, определяющих недостатки сегодняшней тарифной политики применительно к “энергетике крупного города”.

Мы пытаемся одной мерой оценить стоимость двух различных видов энергетической продукции: мощности во времени предоставляемой тепловой и электрической энергии; количества за период отпущенной тепловой и электрической энергии.

Отсутствует (неразвита) система классификации видов энергетической продукции по качеству, количеству.

Отсутствуют (неразвит) принцип авансирования затрат на соответствующий вид энергетической продукции.

При комбинированном производстве тепловой и электрической энергии на ТЭЦ принятый на сегодня метод разделения затрат топлива на тепловую и электрическую энергию не отвечает технологии производства энергии на ТЭЦ.

Мы не стимулируем экономичного потребителя на комбинированное потребление тепловой и электрической энергии, получаемой по комбинированному способу на ТЭЦ, а также не принуждаем неэкономичного потребителя к изменению технологии потребления энергии (мы вынуждены принуждать все общество).

Мы не осуществляем анализ и нормирование расходов топлива, закладываемых в тарифы для конкретного типа потребителей тепловой и электрической энергии.

Самым главным недостатком существующей тарифной политики является то, что тарифы не отражают технологическую суть производства энергии как по качеству, так и по количеству. Предметом рыночных отношений является не просто количество потребленной энергии, а предоставление мощности в определенное временя. На рынок энергетических услуг предоставляется два вида энергетической продукции:

Возможность использования заявленной энергетической мощности в определенное время;

Количество потребленной энергии. При этом методологически нет никакой принципиальной разницы, на какой вид энергии предоставляются услуги - тепловую или электрическую.

Недостаток существующего ценообразования заключается в том, что цена не отражает качества энергии. Если для электроэнергии разработан государственный стандарт, то, как ни парадоксально, мы находимся только на пороге формирования требований к качеству производства и продажи тепловой энергии. Согласно требованиям Гражданского кодекса, поставлены и сформулированы задачи по определению качества и надежности теплоснабжения. Так, если для котельной нет принципиальной разницы, когда производится тепло - летом или зимой, - то для ТЭЦ это различные технологии. Если летом для горячего водоснабжения можно использовать бросовое тепло, поступающее на градирни ТЭЦ, то зимой для отопления жилья отработанного тепла уже не хватает, и необходимо затрачивать дополнительные первичные источники энергии. Если же летом тепло от ТЭЦ не купят, то она все равно это тепло выбросит в окружающую среду или же просто остановится в вынужденный резерв из-за отсутствия теплового потребления.

Одна из основных ошибок существующего метода ценообразования заключается в том, что для простоты калькуляции рассчитываются не конкретные тарифы для характерных режимов энергоснабжения, а средневзвешенные, среднегодовые тарифы. Хотя среднегодовая цена тепла у ТЭЦ ниже чем у котельной, все равно она не стимулирует промышленных покупателей тепловой энергии пойти на то, чтобы не сжигать топливо на своих котельных и по обоюдовыгодной цене использовать сбросное тепло от ТЭЦ.

Абсурдность существующих тарифов заключается и в том, что цена не отражает количество потребленной энергии по времени. Так, при равномерном потреблении 1000 Гкал в течение года достаточно источника тепла с мощностью 0.11 Гкал/час. Для производства этого же количества тепла, требуемого для того, чтобы обеспечить зимний максимум нагрузок за расчетную пятидневку требуется уже 8.3 Гкал/час. Разница мощностей установленного оборудования составляет 73-кратную величину. Соответственно нужны дополнительные специалисты, площади, оборудование. Оборудование находится в резерве 97% времени и работает только 3% времени, а стоимость покупки энергии одинакова в обоих случаях. Но для общества нет никакой разницы в оплате затрат.

Тепловые насосы в отопительном процессе могут использоваться в водо- и пароподогревателях. Еще несколько лет тому назад они представляли собой лишь ориентиры в экономии энергии. Сейчас они нашли уже довольно широкое применение. Однако не во всех случаях тепловые насосы позволяют экономить энергию. Особенно это касается тепловых насосов с электроприводом, которые потребляют значительное количество электроэнергии. Совсем по-другому обстоит дело при использовании двигателей внутреннего сгорания с дизельным или газовым топливом, равно как и абсорбционных тепловых насосов.

Принцип работы.

Тепловой насос по принципу работы не отличается существенно от холодильника, где тепло с помощью вспомогательного источника энергии извлекается из объема охлаждаемого тела и передается в воздух помещения. Тепловой насос «качает» энергию из окружающего воздуха, земли или воды и использует это тепло для подогрева воды и отопления. В зависимости от привода различают компрессионные и абсорбционные тепловые насосы.

Тепловой насос извлекает энергию из окружающей среды при относительно низких температурах. Для использования этой энергии при отоплении или паро- и водоподогреве температурный уровень энергии необходимо повысить. Это может быть сделано, например, путем сжатия пара.

Электрические компрессионные тепловые насосы осуществляют сжатие пара за счет электродвигателей небольшой мощности.

Газокомпрессионные тепловые насосы обеспечивают сжатие пара путем использования небольшого газового мотора.

Поскольку уносимое мотором тепло может вовлекаться в циркуляцию, осуществляемую тепловыми насосами, выработанная первичная энергия используется хорошо. Так, из 100% произведенной первичной энергии с учетом использования энергии окружающей среды можно получить до 160% полезной энергии.

Компрессионные тепловые насосы с дизельными моторами сравнимы с газовыми тепловыми насосами, однако здесь возникает проблема с отводом выхлопных газов.

Абсорбционные тепловые насосы, в сущности, отличаются от компрессионных тепловых насосов только элементами привода. Сжатие осуществляется не при помощи двигателя, а рабочим телом и теплом сгорания жидкого или газового топлива. Так как абсорбционные тепловые насосы почти не имеют подвижных элементов, они отличаются высокой долговечностью (большим рабочим ресурсом).

Абсорбционные тепловые насосы весьма перспективны для отопления жилых домов, поскольку их узлы невелики по размерам и в серийном производстве недороги.

Источники тепла.

Все тепловые насосы используют тепло окружающей среды, источником которого, в конечном счете, является солнечное излучение. В результате сжатия испаряющейся жидкости насос переходит на высокий температурный уровень. Так как все же со снижением температуры окружающей среды расход электроэнергии сильно повышается, некоторые природные источники тепла не могут в течение всего года использоваться экономно.

Область применения тепловых насосов в системе теплофикации.

Законодателям, определяющим энергетическую стратегию региона, необходимо полностью отказаться от услуг так называемого “физического метода” распределения экономии топлива и перейти на применение “эксергетического метода” анализа. Методические указания по составлению отчета электростанции о тепловой экономичности оборудования должны быть пересмотрены и должны отвечать технологической сути комбинированного производства энергии. Чем ниже температура сетевой воды, используемой тепловым потребителем, тем меньше требуется топлива на ТЭЦ для его дополнительного производства как тепловой, так и электрической энергии.

Низкотемпературное тепло на уровне 45 °С как раз и является той экономической нишей, где применение тепловых насосов технически и экономически выгодно. Не надо строить дополнительных теплообменников для забора тепла из систем охлаждения конденсаторов! Достаточно забирать это тепло непосредственно в центре тепловых потребителей из обратной сетевой воды, “захолаживая” обратную сетевую воду от 45-70° С до температуры +10°С. Цена на это тепло должна зависеть от числа часов использования сбросного тепла. Если же это тепло не будет забираться в часы максимума тепловых нагрузок, то цена должна быть в 10-20 раз ниже цены пикового тепла.

Тепловые насосы и теплофикация являются взаимно исключающими и взаимно дополняющими энергосберегающими технологиями. Теплофикация является более эффективным технологическим решением, чем тепловые насосы. Применять тепловые насосы непосредственно на ТЭЦ, ГРЭС, где имеются круглогодичные сбросы тепла в градирни, пруды охладители, нет никакого смысла. Греть воду, получать пар необходимых параметров необходимо производить непосредственно с отборов паровых турбин, без сложной трансформации тепла с помощью тепловых насосов. Однако, если на ТЭЦ имеются сбросы тепла в атмосферу или водоем, то можно применять тепловой насос для сверхбалансовой нагрузки, непосредственно забирая тепло из обратной сетевой воды у удаленного потребителя по цене сбросного тепла. Это означает, что, если на ТЭЦ имеется сбалансированная тепловая и электрическая нагрузка, то область применения тепловых насосов возможно только в те периоды, когда нет пиковых нагрузок. Для условий г. Омска этот внепиковый период времени составляет порядка 7000-7500 часов.

Экономическая ниша в схеме балансов тепловой и электрической энергии на ТЭЦ позволяет сделать технологический прорыв в применении тепловых насосов в “Энергетике крупного города”. Так, с применением тепловых насосов можно и нужно:

- значительно расширить область  комбинированного производства  и комбинированного потребления  тепловой и электрической энергии;

- пересмотреть концепцию теплоснабжения  населения городов:

- базовая низкотемпературная нагрузка  до 115° С - от теплофикационных отборов ТЭЦ;

- пиковая нагрузка - от пиковых  котельных, абсорбционных тепловых  насосов, компрессионных тепловых  насосов, находящихся в центре  тепловых нагрузок;

- применять низкотемпературный транспорт базовой нагрузки тепловых сетей по графику: для полубазовых нагрузок ТЭЦ – 65-10° С, для пиковых нагрузок ТЭЦ – 115-10° С, для пиковых нагрузок тепловых сетей - количественно - и качественное регулирование;

- использовать полиэтиленовые трубы для невысоких температур до 95° С и невысоких давлений до 0.6 Мпа;

- применять трехтрубные системы: две трубы - отопление, третья труба- только для горячего водоснабжения;

- получать пар из сетевой  воды и закрыть сотню низкоэффективных  паровых котельных.

 

               4. СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

  1. Турбин В.С., Капошин И.С., Мартыненко Г.Н. Методические указания к выполнению курсовой работы для студентов спец. 290700 – «Теплогазоснабжение, отопление и вентиляция». Воронеж, 2004.
  2. Д.Н. Китаев, Г.Н. Мартыненко Методические указания к выполнению курсовой работы по дисциплине «Техническая термодинамика» для студентов 270109 «Теплогазоснабжение и вентиляция».
  3. Кириллин В.А., Сычев В.В., Шейндлин А.Е. Техническая термодинамика, 2-е издание, М: Энергия, 1974.
  4. Кушнырев В.И., Лебедев В.И., Павленко В.А. Техническая термодинамика и теплопередача: учебник, 1-е издание, М: Стройиздат, 1986.

Информация о работе Контрольная работа по "Общей энергетике"