Автор работы: Пользователь скрыл имя, 29 Января 2013 в 13:36, курсовая работа
Человечеству в последнее время постоянно не хватает энергии. С другой стороны, оно в буквальном смысле купается в ней. Так, например, для удовлетворения своих энергетических потребностей человечеству достаточно утилизировать всего 5%-й КПД солнечной энергии, падающей на 0,13% поверхности земного шара. И, тем не менее, энергии не хватает. Именно поэтому производство энергии является серьезным бизнесом, ничуть не менее серьезным, чем телефонная связь -- американский рынок производства электроэнергии оценивается более чем в 220 млрд. долл., что превышает совокупную величину рынков сотовой и междугородной связи.
Микроэнергетика
Человечеству в последнее
Энергетический рынок всегда развивался чрезвычайно динамично. Но особую стремительность эта динамика приобрела в последние годы. Все указывает на то, что в производстве энергии, особенно электричества, грядет настоящая революция. И секрет этой революции заключается в использовании так называемой "микроэнергетики" -- раздела энергетики, связанной с производством энергии при помощи компактных маломощных (от ватт до киловатт) источников различной природы.
Термин "микроэнергетика" был предложен Сетом Дунном из Института мировой экологии (Worldwatch Institute), который к этой категории отнес солнечные батареи, ветрогенераторы, водородные элементы и газовые микротурбины, т.е. маломощные генераторы электричества. Однако с учетом технических и экономических аспектов современной энергетики термин "микроэнергетика" необходимо трактовать более широко, рассматривая не только проблемы генерации электричества, но также и проблемы генерации тепла и холода.
В силу чрезвычайной привлекательности своей концепции и особенностей используемых технологий микроэнергетика способна проникать с одинаковой скоростью и на рынки промышленно развитых стран, и в неразвитые районы, где с ее помощью местная промышленность и население смогут получить доступ к энергии, не дожидаясь развития крупных станций и национальной энергосети. Эффективность современной микроэнергетики подтверждается значительным интересом, проявляемым к ней гигантами современной индустрии. Так, например, швейцарский энергетический гигант АВВ недавно объявил, что начинает сворачивать свой бизнес по созданию атомных электростанций и переключается на разработку возобновляемых источников энергии и небольших электростанций, расположенных поблизости от потребителей.
Все,
По сравнению с традиционными технологиями, микроэнергетика более эффективна и надежна. Напомним, что современная надежность традиционных источников и энергетических сетей описывается термином "три девятки", что означает гарантию работоспособности в течение 99,9% времени. Это означает практически запланированный отказ ежегодно на 8 часов. Однако многим современным производствам нужна совсем иная надежность, а именно "девять девяток". Достичь ее можно только с переходом на микроэнергетические установки и новые принципы работы энергосетей.
Несколько слов об экологическом преимуществе микроэнергетики. Солнечные батареи и коллекторы уже сейчас являются эталоном экологически чистых источников энергии. Топливо (водород и природный газ), используемое микроэнергетикой, также сравнительно спокойно воспринимается экологами.
Но что самое главное-- микроэнергетика позволяет пользователю почувствовать себя независимым от состояния централизованных электрических и тепловых сетей, надежность которых стремительно падает, что подтвердили события последних лет в России. Да и не только в России -- энергетики всего мира знают о страшной аварии, случившейся в американской энергетике 9 ноября 1965 года. Всего за 13 минут огромная площадь - 250 тыс. кв. км - в Северной Америке и Канаде осталась без электричества. С тех пор было написано сотни томов о том, что творилось в городах самой богатой страны мира, - там было царство хаоса и насилия. Пилоты самолетов, летящих в этот момент над Америкой, в ужасе сообщали диспетчерам, что ничего страшнее в жизни не видели: вместо моря огней - безмолвная темнота, они боялись, что террористы уничтожили страну. Но больше всего были потрясены энергетики: верх технологического творчества, управляемая компьютерами огромная энергетическая сеть, оказалась уязвимой и беспомощной.
Особенно велики перспективы микроэнергетики в развивающихся странах и странах с переходной экономикой, многие из которых испытывают серьезные проблемы из-за состояния своих энергосистем. Уже сегодня многие пользователи в этих странах, не желая зависеть от капризов инфраструктуры, используют местные источники энергии, как правило, дизельные генераторы. Использование для этих целей солярных устройств, гидро и ветрогенераторов, а также тепловыделяющих элементов и газовых турбин позволило бы таким странам перешагнуть в развитии своей энергетики через этап гигантских электростанций, подобно тому, как многие страны сейчас перешагивают через традиционную телефонную связь, переходя сразу к беспроводной.
Заметим, что кардинальное изменение структуры выработки энергии, связанное с развитием микроэнергетики, неизбежно должно привести к не менее кардинальной смене структуры сети доставки и распределения энергии. До сих пор электричество и тепло текло от крупных электростанций к розеткам и батареям домов. На такой односторонний поток энергии ориентированы все системы энергетических сетей. Появление микроэнергетики заставило специалистов задуматся о включении малых генерирующих мощностей в сети. Сейчас же для электросетей активно разрабатываются новые схемы релейной защиты и управления сетями, которые позволят включать "микрогенераторы" в основную сеть, что сделает их похожими на телекоммуникационные сети. Уже разработаны устройства под названием FACTS (Flexible AC Transmission System - гибкие системы передачи переменного тока) являющиеся, по сути дела, маршрутизаторами для электричества, способные оперативно направлять требуемое количество электричества в нужное место. В будущем это позволит избежать колебания рыночных цен на электроэнергию. Сейчас у них один недостаток - высокая стоимость, но есть надежда, что новые полупроводниковые технологии на основе карбида кремния, нитрида галлия и алмазных пленок снизят их стоимость.
Сегодня по линиям электропередачи передается переменный ток, хотя большинство потребителей, в частности, цифровые устройства в своей работе использует постоянный электрический ток. Дело в том, что передача постоянного тока на значительные расстояния приводит к огромным потерям. Поэтому современные компьютеры и большинство других приборов содержат устройства, превращающие переменный ток в постоянный, нужный для работы. Ветровые и солнечные электростанции создают как раз постоянный ток, но у них есть один недостаток -- нестабильность режима работы как следствие зависимости от природных условий. Первый выход -- использовать современные аккумуляторы или конденсаторы, другой -- создавать локальные "микросети" постоянного тока, работающих с эффективностью в "девять девяток". Первая такая сеть уже начала работать в Южной Калифорнии.
Как видим успехи микроэнергетики грандиозны. Не менее грандиозно и ее будущее. Но в настоящий момент полностью реализовать свой потенциал микроэнергетике не позволяют определенные препятствия. Прежде всего, это трудности, связанные с налогообложением, системой стандартов и государственным протекционизм в отношении традиционных производителей энергии. Многие крупные энергетические компании дотируются государством в виде прямых субсидий или косвенным путем. В Европе такое дотирование происходит непосредственно за счет налогоплательщиков, в США оно носит косвенный характер и заключается в смягчении природоохранного законодательства в отношении крупных производителей энергии. Существует и прямая налоговая дискриминация микроэнергетики, заключающаяся, например, в установке невыгодных норм амортизации по тепловыделяющим элементам. Отсутствует также единая система стандартов в области микроэнергетики. Так, например, одно из преимуществ микроэнергетики заключается в возможности владельца источника энергии выступать как в роли потребителя, так и в роли поставщика энергии, продавая ее излишки через общую сеть. Это вполне может быть реализовано при помощи существующих средств управления сетями, однако это требует введения единой системы стандартов на энергию, передаваемую подобным образом. В настоящее время такие стандарты приняты всего в нескольких странах. Таким образом, для реализации своего права на продажу энергии, владелец микроэнергетического источника будет вынужден разбираться с огромным числом часто противоречащих друг другу правил и инструкций. Это создает почву для дискриминации таких производителей традиционными компаниями, которые получают возможность препятствовать их выходу на рынок, ссылаясь при этом на якобы не соблюдаемые правила безопасности или требуя введения в отношении поставщиков "микроэнергии" длительных и дорогостоящих инспекционных и контрольных процедур.
Развитие микроэнергетики затрудняется также из-за значительного государственного регулирования в этой области. Наиболее благоприятна ситуация в США, где более половины штатов приняли законы, либерализующие их энергетические рынки. Однако, недостаточная координация в области продажи электроэнергии между отдельными штатами, отсутствие единого органа регулирования в этой области и существующее требование сохранять резервные мощности для удовлетворения потребностей пикового спроса, приводят к неопределенности, препятствующей выходу на рынок новых участников. В Европе регулирование рынка энергии является еще большей проблемой. Так, например, лоббирование компании "Electricite de France" привело к тому, что Франция так и не выполнила директивы Европейского Союза, предписывающие либерализацию энергетического рынка.
Однако, несмотря на имеющиеся трудности, микроэнергетика стремительно развивается и особенно та ее часть, которая связана с альтернативной энергетикой. Согласно прогнозам Мирового Энергетического Конгресса к 2020 году в США, Германии, Японии, Великобритании и других развитых западных странах доля альтернативных экологически чистых источников энергии составит более 20% всей производимой энергии (20% потребления энергии в США -- это все энергоснабжение России). К 2020 году Европапланирует осуществлять теплоснабжение 70%(!) своего жилого фонда за счет экологически чистой энергии, в частности, солнечной. В мире (без России) уже сейчас геотермическими станциями производится более 5200 МВт и в ближайшее время будет введено в строй таких генерирующих мощностей еще более 2000 МВт. И ведущее место здесь занимают США - более 40% действующих и вводимых мощностей. В США к концу 2001 года производилось около 500 МВт солнечной электроэнергии. Сейчас в мире годовой выпуск фотоэлектрических преобразователей уже превысил 300 МВт. Кроме того, солнечная энергия все более активно используется для генерации тепла - в мире работает уже более 2 млн термических гелиосистем. Так, например, в США общая площадь солнечных коллекторов превысила 10 млн квадратных метров, а в Японии - 8 млн.кв.м. В США и Японии работает также более 5 млн. тепловых насосов, более 100 000 ветрогенераторов. Активно ведутся исследования в области создания генерирующих мощностей на базе водородного топлива. Кроме того, во всех развитых западных странах принято специальное законодательство, стимулирующее развитие альтернативных источников энергии путем создания целой системы льгот как для производителей, так и для потребителей экологически чистой энергии.
Среди альтернативных источников энергии
особенно активно развивается
Следующее перспективное направление микроэнергетики - солнечная энергетика. Проблема утилизации экологически чистой и притом "дармовой" солнечной энергии волнует человечество с незапамятных времен, но только недавно успехи в этом направлении позволили начать формировать реальный, экспоненциально развивающийся рынок солнечной энергетики. К настоящему времени основными способами прямой утилизации солнечной энергии являются преобразование ее в электрическую и тепловую. Устройства, преобразующие солнечную энергию в электрическую, называются фотоэлектрическими или фотовольтаическими (PV-системы), а приборы, преобразующие солнечную энергию в тепловую, -- термическими (Т-системы). В последнее время все большее распространение получают так называемые гибридные или как их еще называют комбинированные системы (Н-системы), сочетающие в себе функции фотовольтаических и термических устройств. Отличительной особенностью гибридных систем является возможность их функционирования в автономном режиме, без подключения к централизованным энергосистемам. Часто в литературе все три типа приборов называются гелиосистемами. Подобные источники энергии очень ждут прежде всего в Китае, Индии, Индонезии. В Южной Африке с помощью солнечных батарей заряжаются в сельских районах беспроводные телефоны. В Кении в ближайшее время десятки тысяч домов будут получать энергию от солнечных батарей, выпуск которых наладили местные производители. До сих пор в Индии ежегодно умирают полмиллиона детей из-за загрязнения жилищ продуктами горения углеродного топлива. Солнечные генераторы электричества не только принесут энергию в дома, но и спасут миллионы жизней. В Китае из-за того же загрязнения миллионы некурящих женщин страдают от хронических бронхитов и рака легких, поскольку готовят пищу на открытом огне.
Следующая перспективная технология - водородные топливные элементы. Суть ее в том, что на специальных мембранах электрон отделяется от ядра атома водорода, в результате чего получается электрический ток, а в отходах - вода и тепло. Пять таких водородных элементов мощностью по 200 киловатт работают на Аляске, освещая и обогревая здание почты в городе Анкоредже. После часовой аварии электросети в Омахе отделение Первого национального банка понесло убытки в 6 млн. долл., после чего в срочном порядке поставило в своем вычислительном центре резервные источники электричества на водородных элементах. Эта технология планируется и для автомобильных двигателей. В недалеком будущем микропроцессор в каждом автомобиле будет постоянно "знать" стоимость электричества и определять момент, когда можно будет продать немного избыточной мощности мотора. Кстати, в марте 2001 года американский сенат принял закон об установке специальных счетчиков на местных генераторах электричества (в основном на возобновляемых источниках энергии), чтобы можно было подсчитывать энергию, которую они смогут направлять в сеть, если захотят.