Автор работы: Пользователь скрыл имя, 22 Декабря 2012 в 12:53, курсовая работа
Оптика - это учение о физических явлениях, связанных с распространением коротких электромагнитных волн, длина которых составляет приблизительно 10-5-10-7 м. Значение именно этой области спектра электромагнитных волн связано с тем, что внутри нее в узком интервале длин волн от 400-760 нм лежит участок видимого света, непосредственно воспринимаемого человеческим глазом. Он ограничен с одной стороны рентгеновскими лучами, а с другой - микроволновым диапазоном радиоизлучения. С точки зрения физики происходящих процессов выделение столь узкого спектра электромагнитных волн (видимого света) не имеет особого смысла, поэтому в понятие "оптический диапазон" включает обычно ещё и инфракрасное и ультрафиолетовое излучение.
С помощью рис. 11,б легко видеть , что увеличение N равно также отношению угла зрения φ' при рассматривании предмета через инструмент к углу зрения φ для невооруженного глаза, ибо φ' и φ невелики. [ 2,3 ] Итак,
N = b' / b = φ' / φ ,
где N – увеличение предмета ;
b' – длина изображения на
сетчатке для вооруженного
b - длина изображения на сетчатке для невооруженного глаза;
φ' – угол зрения при рассматривании предмета через оптический инструмент;
φ – угол зрения при рассматривании предмета невооруженным глазом.
Одним из простейших оптических приборов является лупа – собирающая линза, предназначенная для рассматривания увеличенных изображений малых объектов. Линзу подносят к самому глазу, а предмет помещают между линзой и главным фокусом. Глаз увидит мнимое и увеличенное изображение предмета . Удобнее всего рассматривать предмет через лупу совершенно ненапряженным глазом , аккомодированным на бесконечность. Для этого предмет помещают в главной фокальной плоскости линзы так , что лучи, выходящие из каждой точки предмета , образуют за линзой параллельные пучки. На рис. 12 изображено два таких пучка , идущих от краев предмета. Попадая в аккомодированный на бесконечность глаз, пучки параллельных лучей фокусируются на ретине и дают здесь отчетливое изображение предмета.
Угловое увеличение. Глаз находится очень близко к линзе , поэтому за угол зрения можно принять угол 2γ , образованный лучами, идущими от краев предмета через оптический центр линзы. Если бы лупы не было , нам пришлось бы поставить предмет на расстоянии наилучшего зрения (25 см) от глаза и угол зрения был бы равен 2β . Рассматривая прямоугольные треугольники с катетами 25 см и F см и обозначая половину предмета Z , можем написать :
,
где 2γ – угол зрения, при наблюдении через лупу;
2β - угол зрения, при
наблюдении невооруженным
F – расстояние от предмета до лупы;
Z – половина длины рассматриваемого предмета.
Принимая во внимание , что через лупу рассматривают обычно мелкие детали и поэтому углы γ и β малы, можно тангенсы заменить углами. Таким образом получится следующее выражение для увеличения лупы = = .
Следовательно, увеличение лупы пропорционально 1 / F , то есть её оптической силе. [1]
Прибор, позволяющий получить большое увеличение при рассматривании малых предметов, называется микроскопом.
Простейший
микроскоп состоит из двух собирающих
линз. Очень короткофокусный
Обозначим линейное увеличение , даваемое объективом, через n1, а окуляром через n2, это значит , что = n1 и = n2 ,
где P'Q' – увеличенное действительное изображение предмета;
PQ – размер предмета;
P''Q'' - увеличенное мнимое изображение предмета;
n1 – линейное увеличение объектива;
n2 – линейное увеличение окуляра.
Перемножив эти выражения , получим = n1 n2 ,
где PQ – размер предмета;
P''Q'' - увеличенное мнимое изображение предмета;
n1 – линейное увеличение объектива;
n2 – линейное увеличение окуляра.
Отсюда видно , что увеличение микроскопа равно произведению увеличений, даваемых объективом и окуляром в отдельности. Поэтому возможно построить инструменты, дающие очень большие увеличения – до 1000 и даже больше. В хороших микроскопах объектив и окуляр - сложные.
Окуляр обычно состоит из двух линз
объектив же гораздо сложнее. Желание
получить большие увеличения заставляют
употреблять короткофокусные
В современных микроскопах теоретический предел уже почти достигнут. Видеть в микроскоп можно и очень малые объекты , но их изображения представляются в виде маленьких пятнышек, не имеющих никакого сходства с объектом.
При рассматривании таких маленьких частиц пользуются так называемым ультрамикроскопом, который представляет собой обычный микроскоп с конденсором, дающим возможность интенсивно освещать рассматриваемый объект сбоку, перпендикулярно оси микроскопа.
С помощью ультрамикроскопа удаётся обнаружить частицы , размер которых не превышает миллимикронов.
Простейшая зрительная труба состоит из двух собирающих линз. Одна линза, обращенная к рассматриваемому предмету, называется объективом , а другая , обращенная к глазу наблюдателя - окуляром.
Ход лучей в зрительной трубе показан на рис. 14.
Объектив L1 дает действительное обратное и сильно уменьшенное изображение предмета P1Q1 , лежащее около главного фокуса объектива. Окуляр помещают так , чтобы изображение предмета находилось в его главном фокусе. В этом положении окуляр играет роль лупы, при помощи которой рассматривается действительное изображение предмета.
Действие трубы , так же как и лупы, сводится к увеличению угла зрения. При помощи трубы обычно рассматривают предметы, находящиеся на расстояниях , во много раз превышающих её длину. Поэтому угол зрения , под которым предмет виден без трубы, можно принять угол 2β , образованный лучами, идущими от краев предмета через оптический центр объектива.
Изображение видно под углом 2γ и лежит почти в самом фокусе F объектива и в фокусе F1 окуляра.
Рассматривая два
,
где 2γ - угол под которым видно изображение предмета;
2β - угол зрения, под которым виден предмет невооруженным глазом;
F - фокус объектива;
F1 - фокус окуляра;
Z' - половина длины рассматриваемого предмета.
Углы β и γ -не велики, поэтому можно с достаточным приближением заменить tgβ и tgγ углами и тогда увеличение трубы = ,
где 2γ - угол под которым видно изображение предмета;
2β - угол зрения, под которым виден предмет невооруженным глазом;
F - фокус объектива;
F1 - фокус окуляра.
Угловое увеличение трубы определяется отношением фокусного расстояния объектива к фокусному расстоянию окуляра . Чтобы получить большое увеличение , надо брать длиннофокусный объектив и короткофокусный окуляр. [ 1 ]
Для показа зрителям на экране увеличенного изображения рисунков, фотоснимков или чертежей применяют проекционный аппарат. Рисунок на стекле или на прозрачной пленке называют диапозитивом, а сам аппарат , предназначенный для показа таких рисунков, - диаскопом. Если аппарат предназначен для показа непрозрачных картин и чертежей , то его называют эпископом. Аппарат , предназначенный для обоих случаев называется эпидиаскопом.
Линзу , которая создает изображение находящегося перед ней предмета, называют объективом. Обычно объектив представляет собой оптическую систему, у которой устранены важнейшие недостатки, свойственные отдельным линзам. Чтобы изображение предмета на было хорошо видно зрителям, сам предмет должен быть ярко освещен.
Схема устройства проекционного аппарата показана на рис.16.
Источник света S помещается в центре вогнутого зеркала (рефлектора) Р. свет идущий непосредственно от источника S и отраженный от рефлектора Р, попадает на конденсор К, который состоит из двух плосковыпуклых линз. Конденсор собирает эти световые лучи на
объективе О, который уже направляет их на экран Э, где получается изображение диапозитива Д. Сам диапозитив помещается между главным фокусом объектива и точкой, находящейся на расстоянии 2F от объектива. Резкость изображения на экране достигается перемещением объектива, которое часто называется наводкой на фокус. [ 2 ]
Для наблюдения спектров пользуются спектроскопом.
Наиболее распространенный призматический спектроскоп состоит из двух труб, между которыми помещают трехгранную призму ( рис. 17).
В трубе А , называемой коллиматором имеется узкая щель, ширину которой можно регулировать поворотом винта. Перед щелью помещается источник света, спектр которого необходимо исследовать. Щель располагается в фокальной плоскости коллиматора, и поэтому световые лучи из коллиматора выходят в виде параллельного пучка. Пройдя через призму , световые лучи направляются в трубу В , через которую наблюдают спектр. Если спектроскоп предназначен для измерений , то на изображение спектра с помощью специального устройства накладывается изображение шкалы с делениями , что позволяет точно установить положение цветовых линий в спектре.
При исследовании спектра часто бывает целесообразней сфотографировать его , а затем изучать с помощью микроскопа.
Прибор для фотографирования спектров называется спектрографом.
Схема спектрографа показана на рис. 18.
Спектр излучения с помощью линзы Л2 фокусируется на матовое стекло АВ, которое при фотографировании заменяют фотопластинкой. [ 2 ]
Оптический измерительный
Из приборов первой распространение получили проекторы для измерения и контроля деталей, имеющих сложный контур, небольшие размеры.
Наиболее распространенный прибор второй - универсальный измерительный микроскоп, в котором измеряемая деталь перемещается на продольной каретке, а головной микроскоп - на поперечной.
Приборы третьей группы применяют для сравнения измеряемых линейных величин с мерками или шкалами. Их объединяют обычно под общим названием компараторы. К этой группе приборов относятся оптиметр (оптикатор, измерительная машина, контактный интерферометр, оптический дальномер и др.).
Оптические измерительные
Теодолит - геодезический инструмент для определения направлений и измерения горизонтальных и вертикальных углов при геодезических работах, топографической и маркшейдерских съемках, в строительстве и т.п.
Нивелир - геодезический инструмент для измерения превышений точек земной поверхности - нивелирования, а также для задания горизонтальных направлений при монтажных и т.п. работах.
В навигации широко распространён секстант - угломерный зеркально-отражательный инструмент для измерения высот небесных светил над горизонтом или углов между видимыми предметами с целью определения координат места наблюдателя. Важнейшая особенность секстанта - возможность совмещения в поле зрения наблюдателя одновременно двух предметов, между которыми измеряется угол, что позволяет пользоваться секстантом на самолёте и на корабле без заметного снижения точности даже во время качки.
Перспективным направлением в разработке новых типов оптических измерительных приборов является оснащение их электронными отсчитывающими устройствами, позволяющими упростить отсчет показаний и визирования, и т.п. [ 5 ]
Глава 6. Применение оптических систем в науке и технике.
Применение , а так же роль оптических систем в науке и технике очень велико. Не изучая оптические явления и не развивая оптические инструменты человечество не было бы на столь высоком уровне развития техники.
Почти все современные оптические
приборы предназначены для
Законы построения изображения служат основой для построения разнообразных оптических приборов. Основной частью любого оптического прибора является некоторая оптическая система. В одних оптических приборах изображение получается на экране, другие приборы предназначены для работы с глазом . в последнем случае прибор и глаз представляют как бы единую оптическую систему и изображение получается на сетчатой оболочке глаза.
Изучая некоторые химические свойства веществ, ученые изобрели способ закрепления изображения на твердых поверхностях, а для проецирования изображений на эту поверхность стали использовать оптические системы, состоящие из линз. Таким образом, мир получил фото- и киноаппараты, а с последующим развитием электроники появились видео- и цифровые камеры.
Для исследования малых объектов , практически незаметных глазу используют лупу, а если её увеличения не достаточно , тогда применяют микроскопы. Современные оптические микроскопы позволяют увеличивать изображение до 1000 раз, а электронные микроскопы в десятки тысяч раз. Это даёт возможность исследовать объекты на молекулярном уровне.
Современные астрономические исследования не были бы возможными без «трубы Галилея» и «трубы Кеплера». Труба Галилея , нередко применяемая в обычном театральном бинокле, даёт прямое изображение предмета, труба Кеплера - перевернутое. Вследствие этого , если труба Кеплера должна служить для земных наблюдений , то её снабжают оборачивающей системой (дополнительной линзой или системой призм ) , в результате чего изображение становится прямым. Примером подобного прибора может служить призменный бинокль.