Основные законы термодинамики

Автор работы: Пользователь скрыл имя, 01 Апреля 2014 в 19:06, реферат

Краткое описание

Наука зародилась очень давно, на Древнем Востоке, и затем интенсивно развивалась в Европе. В научных традициях долгое время оставался недостаточно изученным вопрос о взаимоотношениях целого и части. Как стало ясно в середине 20 века часть может преобразовать целое радикальным и неожиданным образом.
Из классической термодинамики известно, что изолированные термодинамические системы в соответствии со вторым началом термодинамики для необратимых процессов энтропия системы S возрастает до тех пор, пока не достигнет своего максимального значения в состоянии термодинамического равновесия. Возрастание энтропии сопровождается потерей информации о системе.

Содержание

ВВЕДЕНИЕ
ГЛАВА 1
ОСНОВНЫЕ ПОНЯТИЯ И ИСХОДНЫЕ ПОЛОЖЕНИЯ ТЕРМОДИНАМИКИ
1. Закрытые и открытые термодинамические системы.
2. Нулевое начало термодинамики.
3. Первое начало термодинамики.
4. Второе начало термодинамики.
5. Обратимые и необратимые процессы.
6. Энтропия.
7. Третье начало термодинамики.
ГЛАВА 2
ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ.
САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ.
1. Общая характеристика открытых систем.
2. Диссипативные структуры.
3. Самоорганизация различных систем и синергетики.
ЗАКЛЮЧЕНИЕ.
ЛИТЕРАТУРА.

Вложенные файлы: 1 файл

основные законы термодинамики.docx

— 36.77 Кб (Скачать файл)

Положение о существовании у всякой термодинамической системы новой однозначной функцией состояния энтропии S , которая при адиабатных равновесных процессах не изменяется и состовляет содержание второго начала термодинамики для равновесных процессов.

 

Математически второе начало термодинамики для равновесных процессов записывается уравнением:

dQ/T = dS или dQ = TdS                                                                                                                        (1.3)

Интегральным уравнением второго начала для равновесных круговых процессов является равенство Клаузиуса :

dQ/T = 0                                                                                                                                                   (1.4)

Для неравновесного кругового процесса неравенство Клаузиуса имеет следующий вид :

dQ/T < 0                                                                                                                                                   (1.5)

Теперь можно записать основное уравнение термодинамики для простейшей системы находящейся под всесторонним давлением :

TdS = dU + pdV                                                                                                                                        (1.6)

 

6. ЭНТРОПИЯ.

Второй закон термодинамики постулирует существование функции состояния , называемой «энтропией» ( что означает от греческого «эволюция» ) и обладающей следующими свойствами : а) Энтропия системы является экстенсивным свойством . Если система состоит из нескольких частей , то полная энтропия системы равна сумме энтропии каждой части . в) Изменение энтропии d S состоит из двух частей . Обозначим через dе S поток энтропии, обусловленный взаимодействием с окружающей средой , а через di S - часть энтропии , обусловленную изменениями внутри системы , имеем

d S = de S + di S                                                                                                                                         (1.7)

Приращение энтропии di S обусловленное изменением внутри системы , никогда не имеет отрицательное значение . Величина di S = 0 , только тогда , когда система претерпевает обратимые изменения , но она всегда положительна , если в системе идут такие же необратимые процессы.

Таким образом di S = 0    обратимые процессы                                                                             (1.8)                                     

); di S > 0       необратимые процессы                                                                                                (1.9)

 

Для изолированной системы поток энтропии равен нулю и выражения (1.8) и (1.9) сводятся к следующему виду :

d S = di S > 0     изолированная  система                                                                                          (1.10)

Для изолированной системы это соотношение равноценно классической формулировке , что энтропия никогда не может уменьшаться , так что в этом случае свойства энтропийной функции дают критерий , позволяющий обнаружить наличие необратимых процессов . Подобные критерии существуют и для некоторых других частных случаев .

Предположим , что система , которую мы будем обозначать символом 1 , находится внутри системы 2 большего размера и что общая система , состоящая системы 1 и 2 , является изолированной.

Классическая формулировка второго закона термодинамики тогда имеет вид : d S = d S1 + d S2 ( 0 (1.11)

Прилагая уравнения (1.8) и (1.9) в отдельности каждой части этого выражения , постулирует , что di S1 ( 0 , di S2 ( 0

Ситуация при которой di S1 > 0 и di S2 < 0 , а d( S1 + S2 )>0 , физически неосуществима . Поэтому можно утверждать , что уменьшение энтропии в отдельной части системы , компенсируемое достаточным возрастанием энтропии в другой части системы , является запрещенным процессом . Из такой формулировки вытекает , что в любом макроскопическом участке системы приращение энтропии , обусловленное течением необратимых процессов , является положительным. Под понятием « макроскопический участок » системы подразумевается любой участок системы , в котором содержится достаточное большое число молекул , чтобы можно было принебреч микроскопическими флуктуакциями. Взаимодействие необратимых процессов возможно лишь тогда, когда эти процессы происходят в тех же самых участках системы .

Такую формулировку второго закона можно было бы назвать « локальной » формулировка в противоположность « глобальной » формулировка классической термодинамики . Значение подобной новой формулировке состоит в том ,что на ее основе возможен гораздо более глубокий анализ необратимых процессов .

 

7. ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ.

 

Открытие третьего начала термодинамики связано с нахождением химического средства - величины , характеризующих способность различных веществ химически реагировать друг с другом . Эта величина определяется работой W химических сил при реакции . Первое и второе начало термодинамики позволяют вычислить химическое средство W только с точностью до некоторой неопределенной функции . Чтобы определить эту функцию нужны в дополнении к обоим началам термодинамики новые опытные данные о свойствах тел . Поэтому

Нернстоном были предприняты широкие экспериментальные исследования поведение веществ при низкой температуре .

В результате этих исследований и было сформулировано третье начало термодинамики : по мере приближения температуры к 0 К энтропия всякой равновесной системы при изотермических процессах перестает зависить от каких-либо термодинамических параметров состояния и в пределе ( Т= 0 К) принимает одну и туже для всех систем универсальную постоянную величину , которую можно принять равной нулю .

Общность этого утверждения состоит в том , что , во-первых , оно относится к любой равновесной системе и , во-вторых , что при Т стремящемуся к 0 К энтропия не зависит от значения любого параметра системы. Таким образом по третьему началу,

lin [ S (T,X2) - S (T,X1) ] = 0 (1.12) или lim [ dS/dX ]T = 0 при Т ( 0 )                                                   (1.13)

где Х - любой термодинамический параметр (аi или Аi).

Предельно значение энтропии , поскольку оно одно и тоже для всех систем, не имеет никакого физического смысла и поэтому полагается равным нулю (постулат Планка). Как показывает статическое рассмотрение этого вопроса , энтропия по своему существу определена с точностью до некоторой постоянной (подобно, например, электростатическому потенциалу системы зарядов в какой либо точке поля). Таким образом , нет смысла вводить некую «абсолютную энтропию», как это делал Планк и некоторые другие ученые.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ГЛАВА 2

 

ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ.

 

САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ.

Около 50 лет назад в результате развития термодинамики возникла новая дисциплина - синергетика. Являясь наукой о самоорганизации самых различных систем - физических , химических , биологических и социальных - синергетика показывает возможность хотя бы частичного снятия междисциплинных барьеров не только внутри естественно научной отросли знания , но так же и между естественно научной и гумонитарной культурами .

Синергетика занимается изучением систем , состоящих из многих подсистем самой различной природы , таких , как электроны , атомы , молекулы , клетки, нейтроны , механические элементы , фотоны , органы , животные и даже люди.

При выборе математического аппарата необходимо иметь ввиду , что он должен быть применим к проблемам , с которыми сталкиваются физик , химик , биолог , электротехник и инженер механик. Не менее безотказно он должен действовать и в области экономики , экологии и социологии .

Во всех этих случаях нам придется рассматривать системы , состоящие из очень большого числа подсистем , относительно которых мы можем не располагать всей полной информацией . Для описания таких систем не редко используют подходы , основанные на термодинамики и теории информации.

Во всех системах , представляющих интерес для синергетики , решающую роль играет динамика. Как и какие макроскопические состояния образуются, определяются скоростью роста (или распада) коллективных «мод» . Можно сказать что в определенном смысле мы приходим к своего рода обобщенному дарвенизму , действие которого распознается не только на органический ,но и на неорганический мир : возникновение макроскопических структур обусловленных рождением коллективных мод под воздействием флуктуаций , их конкуренцией и , наконец, отбором «наиболее приспособленной» моды или комбинации таких мод.

Ясно, что решающую роль играет параметр «время» . Следовательно , мы должны исследовать эволюцию систем во времени . Именно поэтому интересующие нас уравнения иногда называют «эволюционными».

 

1. ОБЩАЯ ХАРАКТЕРИСТИКА  ОТКРЫТЫХ СИСТЕМ.

 

Открытые системы - это термодинамические системы , которые обмениваются с окружающими телами ( средой ) , веществом , энергией и импульсом . Если отклонение открытой системы от состояния равновесия невелико , то неравновесное состояние можно описать теми же параметрами (температура , химический потенциал и другие) , что и равновесное . Однако отклонение параметров от равновесных значений вызывают потоки вещества и энергии в системе . Такие процессы переноса приводят к производству энтропии . Примерами открытых систем являются : биологические системы , включая клетку, системы обработки информации в кибернетике , системы энергоснабжения и другие . Для поддержания жизни в системах от клетки до человека необходим постоянный обмен энергией и веществом с окружающей средой . Следовательно живые организмы являются системами открытыми , аналогично и с другими приведенными параметрами. Пригожиным в 1945 году был сформулирован расширенный вариант термодинамики.

В открытой системе изменение энтропии можно разбить на сумму двух вкладов :

d S = d Se + d Si                                                                                                                                          (2.1)

Здесь d Se - поток энтропии , обусловленный обменом энергией и веществом с окружающей средой , d Si - производство энтропии внутри системы (рис. 2.1).

Х - набор характеристик : С - состав системы и внешней среды ; Р - давление ; Т - температура.

Итак , открытая система отличается от изолированной наличием члена в выражении для изменения энтропии , соответствующего обмену . При этом знак члена d Se может быть любым в отличии от d Si .

Для неравновесного состояния :

S < Smax

Неравновесное состояние более высокоорганизованно , чем равновесное , для которого

S = Smax

Таким образом эволюцию к более высокому порядку можно представить как процесс , в котором система достигает состояния с более низкой энтропией по сравнению с начальной .

Фундаментальная теорема о производстве энтропии в открытой системе с независимыми от времени краевыми условиями была сформулирована Пригожиным: в линейной области система эволюционирует к стационарному состоянию , характеризуемому минимальным производством энтропии , совместимым с наложенными граничными условиями .

Итак состояние всякой линейной открытой системы с независящими от времени краевыми условиями всегда изменяется в направлении уменьшения производства энтропии P = d S / d t пока не будет достигнуто состояние текущего равновесия , при котором производство энтропии минимально : d P < 0 (условие эволюции)

P = min , d P = 0 (условие текущего  равновесия) d P/ d t < 0                                                              (2.2)

 

 

 

 

2. ДИССИПАТИВНЫЕ СТРУКТУРЫ.

Каждая система состоит из элементов (подсистем) . Эти элементы находятся в определенном порядке и связаны определенными отношениями. Структуру системы можно назвать организацию элементов и характер связи между ними.

В реальных физических системах имеются пространственные и временные структуры .

Формирование структуры - это возникновение новых свойств и отношений в множестве элементов системы . В процессах формирования структур играют важную роль понятия и принципы :

1. Постоянный отрицательный  поток энтропии .

2. Состояние системы в  дали от равновесия .

3. Нелинейность уравнений  описывающих процессы .

4. Коллективное (кооперативное) поведение подсистем .

5. Универсальный критерий  эволюции Пригожина - Гленсдорфа.

Формирование структур при необратимых процессах должно сопровождаться качественным скачком (фазовым переходом) при достижении в системе критических значений параметров. В открытых системах внешний вклад в энтропию (2.1) d S в принципе можно выбрать произвольно , изменяя соответствующим образом параметры системы и свойства окружающей среды . В частности энтропия может уменьшаться за счет отдачи энтропии во внешнюю среду , т.е. когда d S < 0 . Это может происходить , если изъятие из системы в единицу времени превышает производство энтропии внутри системы.

Чтобы начать формирование структуры , отдача энтропии должна превысить некоторое критическое значение . В сильно неравновесном расстоянии переменные системы удовлетворяют нелинейным уравнениям .

Таким образом , можно выделить два основных класса необратимых процессов:

1. Уничтожение структуры  вблизи положения равновесия . Это  универсальное свойство систем  при произвольных условиях .

2. Рождение структуры вдали  от равновесия в открытой системе  при особых критических внешних  условиях и при нелинейной  внутренней динамики . Это свойство  не универсально .

Информация о работе Основные законы термодинамики