Автор работы: Пользователь скрыл имя, 20 Декабря 2010 в 18:09, реферат
Мы все чаще слышим слова нанонаука, нанотехнология, наноструктурированные материалы и объекты. Отчасти они уже вошли в повседневную жизнь, ими обозначают приоритетные направления научно-технической политики в развитых странах . Так, в США действует программа “Национальная нанотехнологическая инициатива” (в 2001 г. ее бюджет был 485 млн долл., что сопоставимо с годовым бюджетом всей Российской академии наук). Евросоюз недавно принял шестую рамочную программу развития науки, в которой нанотехнологии занимают главенствующие позиции.
Министерство образования и науки РФ
Федеральное агентство по образованию
Забайкальский
государственный гуманитарно-
Реферат
Тема: Основы физического наностроения
Перов А.В.
Чита
2010 г.
Нанотехнологическая революция стартовала!
Мы все чаще слышим слова нанонаука, нанотехнология, наноструктурированные материалы и объекты. Отчасти они уже вошли в повседневную жизнь, ими обозначают приоритетные направления научно-технической политики в развитых странах . Так, в США действует программа “Национальная нанотехнологическая инициатива” (в 2001 г. ее бюджет был 485 млн долл., что сопоставимо с годовым бюджетом всей Российской академии наук). Евросоюз недавно принял шестую рамочную программу развития науки, в которой нанотехнологии занимают главенствующие позиции. Минпромнауки РФ и РАН также имеют перечни приоритетных, прорывных технологий с приставкой “нано-”. По оценкам специалистов в области стратегического планирования, сложившаяся сейчас ситуация во многом аналогична той, что предшествовала тотальной компьютерной революции, однако последствия нанотехнологической революции будут еще обширнее и глубже. Да, собственно, она уже началась и взрывообразно захватывает все новые и новые области. В журнале “Природа” были опубликованы статьи, посвященные отдельным направлениям нанонауки ; теперь постараемся бросить взгляд на нее как на единое целое.
Углубляясь в наноджунгли
Итак, что же сейчас понимают под нанотехнологиями? Сама десятичная приставка “нано-” происходит от греческого слова “nanos”, что переводится как “карлик” и означает одну миллиардную часть чего-либо. Таким образом, чисто формально в сферу этой деятельности попадают объекты с размерами R (хотя бы вдоль одной координаты), измеряемыми нанометрами. Реально диапазон рассматриваемых объектов гораздо шире - от отдельных атомов (R < 0.1 нм) до их конгломератов и органических молекул, содержащих свыше 109 атомов и имеющих размеры гораздо более 1 мкм в одном или двух измерениях. Принципиально важно, что они состоят из счетного числа атомов, и, следовательно, в них уже в значительной степени проявляются дискретная атомно-молекулярная структура вещества и/или квантовые закономерности его поведения. Удовлетворяя наше стремление к миниатюризации, к снижению энергоемкости и материалоемкости, такие системы обладают еще одним козырем. В силу действия различных причин (как чисто геометрических, так и физических) вместе с уменьшением размеров падает и характерное время протекания разнообразных процессов в системе, т.е. возрастает ее потенциальное быстродействие. Пока в серийно производимых компьютерах достигнуто быстродействие (время, затрачиваемое на одну элементарную операцию) около 1 нс, и его можно уменьшить на несколько порядков величины в ряде наноструктур. Но существующие сейчас массовые технологии производства практически достигли своих теоретических пределов и нуждаются в кардинальном обновлении.
Научные основы и объекты нанонауки и нанотехнологии.
Новая парадигма в технологии - “снизу вверх”, вытесняющая и дополняющая старую - “сверху вниз” (т.е. от большой заготовки - к готовому изделию путем отсечения лишнего материала), - базируется на глубоких знаниях свойств каждого атома из таблицы Менделеева и использует силы притяжения между ними при нанометровых расстояниях. В результате действия этих сил могут образовываться атомные конфигурации, стабильность которых определяется типом и прочностью внутренних связей, абсолютной температурой и характером окружения. Чем меньше частица и ниже температура, тем сильнее проявляются ее квантовые качества. Свойства наночастиц сильно изменяются по сравнению с макрочастицами того же вещества, как правило, уже при размерах RcЈ 10-100 нм. Для различных характеристик (механических, электрических, магнитных, химических) этот критический размер может быть разным, как и характер их изменений (монотонный-немонотонный) при R < Rc. Ввиду резкой зависимости свойств вещества от числа одинаковых атомов в кластере ее иногда аллегорически называют даже третьей координатой таблицы Менделеева.
Среди причин размерных эффектов в наномасштабных объектах есть как вполне очевидные, так и заслуживающие дополнительных комментариев. Например, ясно, что доля атомов a, находящихся в тонком приповерхностном слое (~1 нм), растет с уменьшением размера частички вещества R, поскольку a ~ S/V ~ R2/R3 ~ 1/R (здесь S - поверхность частички, V - ее объем). Также общеизвестно, что поверхностные атомы обладают свойствами, отличающимися от “объемных”, поскольку они связаны с соседями по-иному, нежели в объеме. В результате на поверхности может произойти атомная реконструкция и возникнет другой порядок расположения атомов. Для атомов, оказавшихся на краях моноатомных террас, уступов и впадин на них, где координационные числа значительно ниже, чем в объеме, возникают совершенно особые условия. Взаимодействие электронов со свободной поверхностью порождает специфические приповерхностные состояния (уровни Тамма). Все это вместе взятое заставляет рассматривать приповерхностный слой как некое новое состояние вещества.
Заметим также, что поверхность служит стоком (причем почти бесконечной емкости) для большинства дефектов кристаллической структуры благодаря действию сил изображения * и других причин.
*
Силы изображения получили
Силы изображения убывают по мере удаления от поверхности, но если размер частички достаточно мал, они могут “высосать” из объема на поверхность большинство дефектов и сделать его более совершенным в структурном и химическом отношениях.
Далее, вспомним: рассматривая любой процесс переноса (протекание электрического тока, теплопроводность, пластическую деформацию и т.п.), мы приписываем носителям некоторую эффективную длину свободного пробега Rf. При R >> Rf рассеяние (или захват и гибель) носителей происходит в объеме и слабо зависит от геометрии объекта. При R < Rf ситуация радикально меняется и все характеристики переноса начинают сильно зависеть от размеров образца.
Примеры специфического поведения вещества на субмикронном масштабном уровне и основные причины специфики нанообъектов.
Наконец, если объект имеет атомарный масштаб в одном, двух или трех направлениях, его свойства могут резко отличаться от объемных для того же материала из-за проявления в поведении квантовых закономерностей. Например, когда хотя бы один из размеров объекта становится соизмеримым с длиной волны де Бройля для электронов, вдоль этого направления начинается размерное квантование.
Для
анализа свойств нанообъектов используют
широкий спектр физических подходов
и методов.
Что и как получают
Всего
за несколько последних лет
Теоретические основы технологий различного масштабно-временного уровня.
Наиболее крупнотоннажным (после строительных) является производство высокопрочных конструкционных материалов, главным образом металлов и сплавов. Потребность в них и материалоемкость изделий из них зависят от механических свойств: упругости, пластичности, прочности, вязкости разрушения и др. Известно, что прочность материалов определяется химическим составом и реальной атомарной структурой (т.е. наличием определенной кристаллической решетки - или ее отсутствием - и всем спектром ее несовершенств). Высоких прочностных показателей можно добиваться двумя прямо противоположными способами: снижая концентрацию дефектов структуры (в пределе приближаясь к идеальному монокристаллическому состоянию) или, наоборот, увеличивая ее вплоть до создания мелкодисперсного нанокристаллического или аморфного состояния. Оба пути широко используют в современном физическом материаловедении и производстве.
Схематическая
зависимость прочности
от плотности атомарных
дефектов в материале.
G - модуль сдвига.
Разработаны составы и технологии нанесения сверхтвердых покрытий толщиной около 1 мкм, уступающих по твердости только алмазу. При этом резко увеличивается износостойкость режущего инструмента, жаростойкость, коррозионная стойкость изделия, сделанного из сравнительно дешевого материала. По пленочной технологии можно создавать не только сплошные или островковые покрытия, но и щетинообразные, с упорядоченным расположением нановорсинок одинаковой толщины и высоты. Они могут работать как сенсоры, элементы экранов высокого разрешения и в других приложениях.
Способность
углерода образовывать цепочки –С–С–С–
используется Природой для создания
биополимеров, а человеком - синтетических
полимеров и разнообразных
Впоследствии
научились выращивать однослойные
и многослойные углеродные нанотрубки.
Крайне важно, что свойствами нанотрубок
удается управлять, изменяя их хиральность
— скрученность решетки относительно
продольной оси. При этом легко можно получить
проволоку нанометрового диаметра как
с металлическим типом проводимости, так
и с запрещенной зоной заданной ширины.
Соединение двух таких нанотрубок образует
диод, а трубка, лежащая на поверхности
окисленной кремниевой пластинки, — канал
полевого транзистора. Такие наноэлектронные
устройства уже созданы и показали свою
работоспособность. Нанотрубки с регулируемым
внутренним диаметром служат основой
идеальных молекулярных сит высокой селективности
и газопроницаемости, контейнеров для
хранения газообразного топлива, катализаторов.
Кроме того,
нанотрубки могут использоваться как
сенсоры, атомарно острые иголки, элементы
экранов дисплеев сверхвысокого разрешения.
Основные методы создания тонкопленочных структур можно разбить на два больших класса, базирующихся на физическом (в первую очередь, молекулярно-лучевой эпитаксии) и химическом осаждении. При малой толщине (до нескольких атомных слоев) двумерная подвижность осаждаемых на подложку атомов может быть очень высокой. В результате быстрой диффузии по поверхности происходит самосборка нанообъектов, обладающих ярко выраженными квантовыми свойствами: образуются квантовые точки, квантовые ямы, квантовые проволоки, кольца и др. Если систему квантовых точек покрыть слоем инертного материала, а затем снова напылить активный материал, то опять образуются островки, самоупорядочивающиеся на поверхности и даже скоррелированные с положением их предшественников. Повторяя такие процедуры множество раз, можно получить объемно упорядоченные структуры (квазирешетки) из квантовых ям или точек, называемые гетероструктурами, и сделать на их основе лазерные источники света, фотоприемники (в том числе инфракрасного излучения в области длин волн 8—14 мкм, соответствующей максимуму теплового излучения человеческого тела), накопители информации. Вся современная микроэлектроника базируется на планарных полупроводниковых технологиях, которые дают возможность создавать самые разнообразные многослойные тонкопленочные структуры с функциями сенсоров, логической и арифметической обработки сигнала, его хранения и передачи по электронным или оптическим линиям связи.
Наноэлектроника следующих поколений
Любые достижения в нанонауке сначала рассматриваются под углом их приложимости к информационным технологиям. Можно выделить несколько крупных направлений атаки на этом участке фронта: