Автор работы: Пользователь скрыл имя, 07 Мая 2013 в 15:39, реферат
В течение многих веков человечество мечтало о космических по¬лё¬тах. Писатели-фантасты предлагали самые разные средства для дости¬же¬ния этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рас¬сказа добрался до Луны в же¬лезной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А ба¬рон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
Введение
В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
Но ни один учёный, ни один писатель-фантаст за многие века не смог назвать единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть силу земного притяжения и улететь в космос. Это смог осуществить русский учёный Константин Эдуардович Циолковский (1857-1935). Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате. Формула реактивного движения ракеты:
где,
— конечная (после выработки всего топлива) скорость летательного аппарата;
— удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива);
— начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо);
— конечная масса летательного аппарата (полезная нагрузка + конструкция)
Законы Ньютона позволяют
Первый закон Ньютона:
Существуют такие системы
Второй закон Ньютона:
Если на частицу с массой т окружающие тела действуют с силой , то эта частица приобретает такое ускорение , что произведение ее массы на ускорение будет равно действующей силе.
Математически второй закон Ньютона записывается в виде:
Третий закон Ньютона:
Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.
Возьмем, например, детский резиновый шарик, надуем его и отпустим. Мы увидим, что, когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Это и есть реактивное движение.
По принципу реактивного движения
передвигаются некоторые
Примеры реактивного движения можно обнаружить и в мире растений. Например, созревшие плоды «бешеного» огурца при самом легком прикосновении отскакивают от плодоножки и из отверстия, образовавшегося на месте отделившейся ножки, с силой выбрасывается горькая жидкость с семенами; сами огурцы при этом отлетают в противоположном направлении.
Применение реактивного движения в природе
Многие из нас в своей жизни
встречались во время купания
в море с медузами. Во всяком случае,
в Черном море их вполне хватает. Но
мало кто задумывался, что и медузы
для передвижения пользуются реактивным
движением. Кроме того, именно так
передвигаются и личинки
Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.
Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.
Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.
Наибольший интерес
Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.
Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.
Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.
Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.
Применение реактивного движения в технике
В конце первого тысячелетия
нашей эры в Китае изобрели
реактивное движение, которое приводило
в действие ракеты - бамбуковые трубки,
начиненные порохом, они также использовались
как забава. Один из первых проектов
автомобилей был также с
Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.
Идея использования ракет для
космических полётов была предложена
ещё в начале нашего столетия русским
учёным Константином Эдуардовичем Циолковским.
В 1903 году появилась в печати статья
преподавателя калужской
Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.
Идея К.Э.Циолковского была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.
Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.
В основе движения ракеты лежит закон сохранения импульса:
В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.
Если в некоторый момент времени от ракеты будет отброшено какое-либо тело, то она приобретет такой же импульс, но направленный в противоположную сторону. В любой ракете, независимо от ее конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.). Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода). Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления. Благодаря большой разности давлений в камере сгорания и в космическом пространстве, газы из камеры сгорания мощной струей устремляются наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.
Перед стартом ракеты её импульс равен нулю. В результате взаимодействия газа в камере сгорания и всех остальных частей ракеты вырывающиёся через сопло газ получает некоторый импульс. Тогда ракета представляет собой замкнутую систему, и её общий импульс должен и после запуска равен нулю. Поэтому и оболочка ракеты совсем, что в ней находится, получает импульс, равный по модулю импульсу газа, но противоположный по направлению.
Наиболее массивную часть
Первым человеком, который совершил
полёт в космическом
Заключение
Реактивное движение - движение,
возникающее при отделении от
тела с некоторой скоростью какой-
В настоящее время благодаря многим учёным со всего света, изучение реактивного движения продвинуто, но насколько оно продвинуто и сколько осталось до конца пути никто не знает. Человек уже был в космосе, но он чувствует и знает, что он не увидел и одной миллиардной доли того чего бы хотел увидеть. Значит, нам есть к чему стремиться, а если в жизни есть цель, то значит то, что она небессмысленная.
Список литературы