Решение нелинейного уравнения методом Ньютона (касательных)

Автор работы: Пользователь скрыл имя, 16 Марта 2014 в 14:51, курсовая работа

Краткое описание

Процедура подготовки и решения задачи на ЭВМ достаточно сложный и трудоемкий процесс, состоящий из следующих этапов:
Постановка задачи (задача, которую предстоит решать на ЭВМ, формулируется пользователем или получается им в виде задания).
Математическая формулировка задачи.
Разработка алгоритма решения задачи.
Написание программы на языке программирования.
Подготовка исходных данных.
Ввод программы и исходных данных в ЭВМ.
Отладка программы.

Содержание

1. Постановка задачи ........................... 3

2. Краткое описание сущности метода Ньютона
( метода касательных)........................ 5

3. Алгоритм программы .......................... 7

4. Программа на языке PASCAL 7.0 ............... 8

5. Результаты выполнения программы ............. 9

6. Вывод ....................................... 11

СПИСОК ИСПОЛЬЗОВАННИХ ИСТОЧНИКОВ ............... 12

Вложенные файлы: 1 файл

Курсовая по Pascal.DOC

— 75.50 Кб (Скачать файл)

Министерство образования и науки Российской Федерации

Пензенский Государственный Университет

Кафедра «Автономные информационные и управляющие системы»

           Дисциплина «Программирование  и основы алгоритмизации»

 

 

 

 

 

 

 

 

 

 

 

Курсовой проект

                                                          на тему:

«Решение нелинейного уравнения  методом Ньютона (касательных)».

 

 

 

 

 

 

 

 

 

                           Выполнил: ст-т

 

                           Проверила: пр-р  Чистова Г.К.

 

 

 

                                                                  

 

 

 

                                                         2006г.

 

 

СОДЕРЖАНИЕ

 

 

стр.

 

 

1. Постановка задачи ...........................  3

 

2. Краткое описание сущности метода Ньютона

   ( метода касательных)........................  5

 

3. Алгоритм программы .......................... 7

 

4. Программа на языке PASCAL 7.0 ............... 8

 

5. Результаты выполнения программы ............. 9

 

6. Вывод .......................................  11

 

СПИСОК ИСПОЛЬЗОВАННИХ ИСТОЧНИКОВ ............... 12

 

 

 

 

 

 

 

 

1.Постановка задачи


 

 

 

Процедура подготовки и решения задачи на ЭВМ достаточно сложный и трудоемкий процесс, состоящий  из следующих этапов:

  1. Постановка задачи (задача, которую предстоит решать на ЭВМ, формулируется пользователем   или получается им  в виде задания).
  2. Математическая формулировка задачи.
  3. Разработка алгоритма решения задачи.
  4. Написание программы на языке программирования.
  5. Подготовка исходных данных.
  6. Ввод программы и исходных данных в ЭВМ.
  7. Отладка программы.

В настоящей курсовой работе условие задачи дано в математической формулировке, поэтому необходимость в выполнении этапов 1 и 2 отпадает и сразу можно приступить к разработке алгоритма решения задачи на ЭВМ. Под алгоритмом понимается последовательность арифметических и логических действий над числовыми значениями переменных, приводящих к вычислению результата решения задачи при изменении исходных данных в достаточно широких пределах. Таким образом, при разработке алгоритма решения задачи математическая формулировка преобразуется в процедуру решения, представляющую собой последовательность арифметических действий и логических связей между ними. При этом алгоритм обладает следующими свойствами: детерминированностью, означающей, что применение алгоритма к одним и тем же исходным данным должно приводить к одному и том уже  результату; массовость, позволяющей получать результат при различных исходных данных; результативностью, обеспечивающей получение результата через конечное число шагов.

Наиболее наглядным способом описания алгоритмов является описание его в виде схем. При этом алгоритм представляется последовательность блоков, выполняющих определенные функции, и связей между ними. Внутри блоков указывается информация, характеризующая выполняемые ими функции. Блоки схемы имеют сквозную нумерацию.

Конфигурация и размеры блоков, а также порядок построения схем определяются ГОСТ 19.002-80 и ГОСТ 19.003-80.

На этапе  4 составляется программа на языке Турбо-Паскаль. При описании программы необходимо использовать характерные приемы программирования и учитывать специфику языка. В качестве языка программирования выбран язык ПАСКАЛЬ ввиду его наглядности и облегченного понимания для начинающих программистов, а также возможности в дальнейшем использовать для решения более трудных задач.

Этапы алгоритмизации и программирования являются наиболее трудоемкими, поэтому им уделяется большое внимание.

В процессе выполнения курсовой работы студент готовит исходные данные, вводит программу и исходные данные. При работе ввод программы и исходных данных осуществляется с клавиатуры дисплея.

Отладка программы состоит в обнаружении и исправлении ошибок, допущенных на всех этапах подготовки задач к решению на ПЭВМ. Синтаксис ошибки обнаруживается компилятором, который выдает сообщение, указывающее место и тип ошибки. Обнаружение семантических ошибок осуществляется на этапе тестирования программы, в котором проверяется правильность выполнения программы на упрощенном варианте исходных данных или с помощью контрольных точек или в режиме пошагового исполнения.

Задание при обработке на  ЭВМ проходит ряд шагов: компиляцию, редактирование (компоновку) и выполнение.

Обработка результатов решения задачи осуществляется с помощью ЭВМ. Выводимые результаты оформлены в виде, удобном для восприятия.                       

 

 

 

2. Краткое описание сущности метода Ньютона

( метода касательных)


 

Пусть на отрезке [a; b] отделен корень с уравнения f (x) = 0 и f -функция непрерывна на отрезке [a; b], а на интервале  ]a; b[ существуют отличные от нуля производные f ’ и f ”.

Так как f ’(x) ¹ 0 , то запишем уравнение f (x) = 0 в виде :

x = x – ( f (x) / f ’(x))     (1)

Решая его методом итераций можем записать :

xn+1 = x n– ( f (x n) / f ’(x n))    (2)

Если на отрезке [a;b]   f ’(x) * f “(x) > 0, то нул – евое приближение выбираем x0=a. Рассмотрим геометрический смысл метода . Рассмотрим график функции y=f(x). Пусть для определенности f ‘(x) > 0 и f “(x) > 0 (рис. 1). Проведем касательную к графику функции в точке B (b, f (b)). Ее уравнение будет иметь вид :

y = f (b) + f ’(b) * (x – b)

Полагая в уравнении y = 0 и учитывая что f ’(x) ¹ 0, решаем его относительно x. Получим :

x = b – (f (b) /f ‘(b))

Нашли абсциссу x1 точки c1 пересечения касательной с осью ox :

x1 = b – (f (b) – f ’ (b))

 

 

 

 

 

 

 

 

 

 

Проведем  касательную к графику функции в точке b1 (x1; f (x1)).Найдем абсциссу x2 точки с2 пересечения касательной с осью Ox :

x2 = x1 – (f (x1) / ( f ’(x1))

Вообще :

xk+1 = x k – ( f (x k) / f ’(x k))     (3)

Таким образом, формула (3) дает последовательные приближения (xk) корня, получаемые из уравнения касательной , проведенной к графику функции в точке         b k (x k; f (x k0) метод уточнения корня  c  [a;b] уравнения f (x) = 0 с помощью формулы (3) называется методом касательной или методом Ньютона.

Геометрический смысл метода касательных состоит в замене дуги y = f (x) касательной, одной к одной  из крайних точек . Начальное приближение x 0 = a или    x0 = b брать таким, чтобы вся последовательность приближения х k принадлежала интервалу  ]a;b[ . В случае существования производных f ’, f ”, сохраняющих свои знаки в интервале, за х0 берется тот конец отрезка [a;b], для которого выполняется условие  f ’(х0) * f (х0) > 0. Для оценки приближения используется общая формула :

|c-x k-1 | £ | f (x k+1)/m| , где m = min f ’(x) на отрезке [a;b] .

На практике проще пользоваться другим правилом :

Если на отрезке [a;b] выполняется условие  0 < m < | f (x)|  и e - заданная точность решения, то неравенство | x k+1-x k| £ e влечет выполнение неравенства       |c-x k-1| £ e .

В этом случае процесс последовательного приближения продолжают до тех пор, пока не выполнится неравенство:

|c-x k-1| £ e .

 

 

 

 

 

3. Алгоритм программы


 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Программа на языке PASCAL 7.0


 

program metod_kasatel;{Название программы}

 uses Crt;  {Модуль дисплейных функций}

var  {Блок описаний переменных}

xn,xn1,a,b,mx,y0,x0 :real;

 

function f1(x1:Real): Real; {Основная функция}

 begin

  f1 := X-SINX-0,25;

 end;

 

function f2(x4:Real): Real; {Производная от основной функции}

 begin

  f2 := 1-COSX;

 end;

 

begin {Начало основного тела программы}

  Clrscr; {Очистка экрана перед выполнением программы}

 

a:=0;b:=1;

 

 Writeln (' От A=',a,' до B=',b); {Вывод на экран}

 

Readln; {Ожидание нажатия клавиши Enter}

 

xn:=b;

xn1:= f1(xn);

 y0:=f2(b);

 

 begin {Тело цикла}

  xn:=xn1;

  xn1:=f1(xn);

  y0:= f2(xn1);

 

   {Печать промежуточного результата}

   Writeln('xn=',xn,' xn+1=',xn1,' f(xn+1)=',y0);

 

  Readln; { Ожидание нажатия клавиши Enter}

end; {Конец тела цикла}

 

Writeln('Конечные значения'); {Печать полученного результата}

Writeln(' xn+1=',xn1,' f(xn+1)=',y0);

 

Readln; { Ожидание нажатия клавиши Enter}

end. {Конец основного тела программы} 
5. Результаты выполнения программы


 

 

От A= 0.0000000000E+00 до B= 1.0000000000E+00

 Погрешность с= 1.0000000000E-08

От A= 0.0000000000E+00 до B= 1.0000000000E+00

 Погрешность с= 1.0000000000E-08

 

xn= 8.5000000000E-01 xn+1= 9.3681250000E-01 f(xn+1)= 8.4649960270E-02

xn= 9.3681250000E-01 xn+1= 8.9448751986E-01 f(xn+1)=-4.6507647892E-02

xn= 8.9448751986E-01 xn+1= 9.1774134381E-01 f(xn+1)= 2.4288343840E-02

xn= 9.1774134381E-01 xn+1= 9.0559717189E-01 f(xn+1)=-1.3064617920E-02

xn= 9.0559717189E-01 xn+1= 9.1212948085E-01 f(xn+1)= 6.9234699658E-03

xn= 9.1212948085E-01 xn+1= 9.0866774587E-01 f(xn+1)=-3.6990702320E-03

xn= 9.0866774587E-01 xn+1= 9.1051728099E-01 f(xn+1)= 1.9678960780E-03

xn= 9.1051728099E-01 xn+1= 9.0953333295E-01 f(xn+1)=-1.0493249720E-03

xn= 9.0953333295E-01 xn+1= 9.1005799543E-01 f(xn+1)= 5.5884091853E-04

xn= 9.1005799543E-01 xn+1= 9.0977857497E-01 f(xn+1)=-2.9781681224E-04

xn= 9.0977857497E-01 xn+1= 9.0992748338E-01 f(xn+1)= 1.5865717614E-04

xn= 9.0992748338E-01 xn+1= 9.0984815480E-01 f(xn+1)=-8.4537703515E-05

xn= 9.0984815480E-01 xn+1= 9.0989042365E-01 f(xn+1)= 4.5040009354E-05

xn= 9.0989042365E-01 xn+1= 9.0986790364E-01 f(xn+1)=-2.3997676180E-05

xn= 9.0986790364E-01 xn+1= 9.0987990248E-01 f(xn+1)= 1.2785800209E-05

xn= 9.0987990248E-01 xn+1= 9.0987350958E-01 f(xn+1)=-6.8122881203E-06

xn= 9.0987350958E-01 xn+1= 9.0987691573E-01 f(xn+1)= 3.6295678001E-06

xn= 9.0987691573E-01 xn+1= 9.0987510095E-01 f(xn+1)=-1.9338276616E-06

xn= 9.0987510095E-01 xn+1= 9.0987606786E-01 f(xn+1)= 1.0303429008E-06

xn= 9.0987606786E-01 xn+1= 9.0987555269E-01 f(xn+1)=-5.4896190704E-07

xn= 9.0987555269E-01 xn+1= 9.0987582717E-01 f(xn+1)= 2.9248803912E-07

xn= 9.0987582717E-01 xn+1= 9.0987568093E-01 f(xn+1)=-1.5583464119E-07

xn= 9.0987568093E-01 xn+1= 9.0987575885E-01 f(xn+1)= 8.3031409304E-08

xn= 9.0987575885E-01 xn+1= 9.0987571733E-01 f(xn+1)=-4.4236003305E-08

xn= 9.0987571733E-01 xn+1= 9.0987573945E-01 f(xn+1)= 2.3572283681E-08

xn= 9.0987573945E-01 xn+1= 9.0987572766E-01 f(xn+1)=-1.2558302842E-08

xn= 9.0987572766E-01 xn+1= 9.0987573394E-01 f(xn+1)= 6.6920620156E-09

 

Конечные значения

xn+1= 9.0987573394E-01 f(xn+1)= 6.6920620156E-09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

Вывод:

 

   Для решения данного уравнения использовался метод Ньютона (касательных). Этот метод отличается от других тем, что для определения интервала, в котором заключен корень, не требуется находить значения функции с противоположными знаками. Вместо интерполяции (приближения) по двум значениям функции в методе Ньютона осуществляется экстраполяция (предсказание) с помощью касательной к кривой в данной точке.

   В процессе создания  курсовой был разработан алгоритм решения поставленной задачи. По этому алгоритму на языке Турбо Паскаль 7.0 составлена и отлажена программа.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


 

 

 

  1. Алексеев В. Е., Ваулин А.С., Петрова Г. Б. – Вычислительная техника и программирование. Практикум по программированию :Практ .пособие/ –М.: Высш. шк. , 1991. – 400 с.
  2. Абрамов С.А., Зима Е.В. – Начала программирования на языке Паскаль. – М.: Наука, 1987. –112 с.
  3. Вычислительная техника и программирование: Учеб. для техн. вузов/ А.В. Петров, В.Е. Алексеев, А.С. Ваулин и др. – М.: Высш. шк., 1990 – 479 с.
  4. Гусев В.А., Мордкович А.Г. – Математика: Справ. материалы: Кн. для учащихся. – 2-е изд. – М.: Просвещение, 1990. – 416 с.
  5. Марченко А.И., Марченко Л.А. – Программирование в среде Turbo Pascal 7.0 – К.: ВЕК+, М.: Бином Универсал, 1998. – 496с.

 

 


Информация о работе Решение нелинейного уравнения методом Ньютона (касательных)