Автор работы: Пользователь скрыл имя, 12 Декабря 2010 в 19:15, реферат
Технологическая обработка самых различных объектов почти всегда включает в себя термообработку и в первую очередь нагрев или сушку.
При традиционных способах нагрева и сушки (конвективном, радиационным и контактном) нагрев объекта происходит по поверхности. Если теплопроводность объекта низка, что имеет место у диэлектриков, то термообработка объекта происходит медленно, с локальным перегревом поверхности нагрева, отчего возможно подгорание этой поверхности, возникновение внутренних механических напряжений. Все это в конечном счете может привести к выходу объекта из строя.
Сверхвысокочастотным называется нагрев объекта энергией электромагнитного поля сверхвысоких частот. Электромагнитная волна, проникая в объект, взаимодействует с заряженными частицами. Совокупность таких микроскопических процессов приводит к поглощению энергии поля в объекте. Полное описание эффекта может быть получено лишь с помощью квантовой теории. Ограничимся учетом макроскопических свойств материальной среды, описываемых классической физикой.
В зависимости от расположения в них зарядов молекулы диэлектрической среды могут быть полярными и неполярными. В некоторых молекулах расположение зарядов столь симметрично, что в отсутствии внешнего электрического поля их электрический дипольный момент равен нулю. Полярные молекулы обладают некоторым электрическим дипольным моментом и в отсутствии внешнего поля. При наложении внешнего электрического поля неполярные молекулы поляризуются, то есть симметрия расположения их зарядов нарушается, и молекула приобретает некоторый электрический момент.
Под действием внешнего поля у полярных молекул не только меняется величина электрического момента, но и происходит поворот оси молекулы по направлению поля. Обычно различают электронную, ионную, дипольную и структурную поляризации диэлектрика. На СВЧ наибольший удельный вес имеют дипольная и структурная поляризации, так что выделение тепла возможно даже в отсутствии тока проводимости.
СВЧ устройства для технологических целей работают на частотах, установленных международными соглашениями. Для термообработки в диапазоне СВЧ наиболее часто используются электромагнитные колебания на частотах 433, 915, 2375 (2450) Мгц.
Если вместо традиционных способов нагрева использовать нагрев с помощью энергии СВЧ колебаний, то из-за проникновения волны в глубь объекта происходит преобразование этой энергии в тепло не на поверхности, а в его объеме, и потому можно добиться более интенсивного нарастания температуры при большей равномерности нагрева по сравнению с традиционными способами нагрева. Последнее обстоятельство в ряде случаев приводит к улучшению качества изделия.
СВЧ термообработка обладает рядом других преимуществ. Так, отсутствие традиционного теплоносителя обеспечивает стерильность процесса и безинерционность регулирования нагревом. Изменяя частоту, можно добиться нагрева различных компонентов объекта. СВЧ электротермические установки занимают площадь меньшую, чем аналогичные установки с традиционным энергоприводом, и оказывают меньшее вредное воздействие на окружающую среду при лучших условиях труда обслуживающего персонала.
Введение 3
Особенности сверхвысокочастотной энергии 5
СВЧ-печи 7
СВЧ-размораживатели 7
СВЧ-сублиматоры 9
Испытание сверхвысокочастотных бытовых приборов 10
Заключение 14
Список используемой литературы 15
1) по биологической, ценности мясо, прошедшее СВЧ-обработку, практически не отличается от продукта, размораживание которого получено традиционным путем;
2) по органолептическим свойствам рыба, размороженная СВЧ-спс собом, лучше рыбы, размороженной традиционным способом.
Влияние
СВЧ-обработки на пищевые продукты,
в том числе и н| витамины, является
предметом достаточно сложных исследований.
Так, проблема использования электромагнитных
СВЧ-печей для размораживания овощей и
фруктов, подвергнутых низкотемпературному
замораживанию, недостаточно изучена
и ограниченно освещена в литературе.
Установлено, что размораживание в поле
СВЧ-энергии приводит к меньшим потерям
неорганических веществ. При традиционном
способе размораживания часть минеральных
веществ теряется вместе с вытекающей
влагой. При СВЧ-размораживании потери
влаги меньше и, как следствие, меньше
потери неорганических веществ.
СВЧ-сублиматоры
СВЧ-сублиматоры считаются одним из перспективных видов бытовых приборов. Сублимированные продукты сохраняют не только питательные вещества гораздо лучше, чем сушеные или термообработанные, но и присущую им форму, цвет, запах. Упакованные в полиэтиленовую тару, сублимированные продукты могут храниться несколько лет в обычных условиях. Для восстановления сублимированного продукта достаточно его увлажнить, опустив в воду.
Процесс сублимационной сушки продуктов заключается в том, что испарение влаги из продукта происходит после предварительного замо-раживания. К быстрозамороженному продукту при температуре —30°С или ниже подводят тепло или СВЧ-энергию. Происходит испарение (сублимация) влаги; находящейся в твердом состоянии (лед), без перехода в жидкое состояние.
Конструктивно СВЧ-сублиматоры представляют собой соединение морозильника и СВЧ-печи. В камеру СВЧ-печи вводят испаритель морозильника, позволяющий снизить температуру в камере до — 30 °С. В эту же камеру вводят СВЧ-энергию от магнитронного генератора. Управляя температурой в камере, мощностью и временем работы магнитрона, можно обеспечить оптимальный технологический режим не только сублимации, но и приготовления пищи к заданному моменту времени без участия потребителя. Загрузив подготовленный к приготовлению продукт, охлаждают камеру, что позволяет хранить продукт в течение нужного времени. К заданному сроку, который устанавливают на пульте микропроцессорного управления сублиматором, включается СВЧ-генератор и продукт доводится до готовности. В этом отношении очень удобны замороженные продукты, изготовленные пищевой промышленностью.
Объем
производства замороженных продуктов
(вторых блюд, мясных и овощных наборов,
фруктов, ягод) будет постоянно увеличиваться,
а использование их в быту значительно
улучшит ассортимент, обеспечив этим рациональное
питание (с позиций витаминности и калорийности)
и сократив время для приготовления пищи.
Испытание сверхвысокочастотных бытовых приборов
Испытания сверхвысокочастотных бытовых приборов имеют некоторые особенности, связанные с измерением СВЧ-мощности. Остальные параметры (потребляемая мощность, соответствие требованиям электробезопасности и др.) проверяют в соответствии с ГОСТ 14087—80.
Измерение СВЧ-мощности. Стандартным прибором сделать это не всегда удается. Поэтому заводы — изготовители СВЧ-печей рекомендуют принять калориметрический метод следующим образом.
1.Подготовить печь к включению согласно руководству по ее эксплуатации и поместить в рабочую камеру печи кастрюлю из жаропрочного стекла объемом 1,5 л (РСТ УССР 473—72) с 0,001 м3 (I л) питьевой воды (ГОСТ 2874—82).
2.Подготовить
печь к включению,
3.Нажать кнопку «сеть> на передней панели печи.
4.Набрать на световом табло 3 мин 10 с, нажав сначала кнопку «быстро», а затем «замедл.».
5.Нажать кнопку
«жарить» («парить» или «размораживать»)
6.После окончания
работы таймера одну минуту
перемешивать воду в кастрюле
термометром, не касаясь
7.Подсчитать мощность в камере по формуле:
N=(T2-T1) (ρ1V1c1 + mc2)/t,
где T1— начальная температура воды, К; T2 — конечная температура воды, К; р — плотность воды, кг/м3, р=1000 кг/м3; V1, —объем воды, м3 ; c1— удельная теплоемкость воды, Дж/(кг *К), c1 =4190 Дж/(кг*К); m — масса кастрюли, кг; c2 — удельная теплоемкость кастрюли, Дж/(кг*К); с2 = 838 Дж/(кг-К), t — время нагрева, с.
Функционирование печи при отклонениях напряжения. Функционирование проверяют следующим образом.
1.Устанавливают напряжение питания печи 198 В.
2.Определяют мощность в рабочей камере печи. Мощность в рабочей камере в режиме «жарить» (100% мощности в камере) должна быть не менее 450 Вт.
3.Устанавливают напряжение питания печи 242 В.
4.Определяют мощность в рабочей камере печи, которая в режиме «жарить» должна быть не более 800 Вт.
Проверка плотности потока утечки электромагнитной энергии. Проверку производят измерителем плотности потока мощности типа ПЭ-9Р на расстоянии 0,5 м от поверхности печи. Для этого необходимо сделать следующее:
1) подготовить измеритель плотности к включению и выключить согласно инструкции по эксплуатации;
2) подготовить
печь к включению; при
3)нажать кнопку «сеть» на передней панели печи;
4)набрать на световом табло 24 мин 30 с, нажав сначала кнопку «быстро», а потом «замедл.»;
5)нажать кнопку «жарить»; через 1 мин начать измерение утечки плотности потока электромагнитной энергии; каждые 2—3 мин необходимо менять воду; при замене воды печь должна быть выключена;
6) в процессе измерения в каждой точке антенна должна поворачиваться вокруг своей оси на угол не менее 900 ; отсчет принимают максимальное показание прибора (измерителя); при измерении пространство вокруг печи на расстоянии не менее 2 м должно быть свободно от металлических конструкций;
7) выключить печь.
При проведении приемосдаточных испытаний максимальную плотность потока утечки электромагнитной энергии замеряют путем перемещения антенны измерителя вдоль линии сопряжения дверцы с камерой печи и в плоскости смотрового окна дверцы и перпендикулярно нижней плоскости редуктора.
При
проведении периодических испытаний
замер плотности утечки производится
согласно рекомендациям Киевского научно-исследовательского
института общей и коммунальной гигиены.
Измерение
производится в четырех плоскостях:
первая плоскость — на уровне верхней
плоскости печи; вторая — на уровне полувысоты
корпуса печи; третья — на уровне нижней
плоскости корпуса печи;
четвертая — плоскость сопряжения
дверцы с камерой а также
в центральной точке смотрового окна дверцы.
ЗАКЛЮЧЕНИЕ
Развитие
технического прогресса, новых технологий
оказывает влияние на разработку
новых современных бытовых
Список
используемой литературы
1. Бондарь Е.С.
Современные бытовые
2. Привалов С.Ф. Электробытовые устройства и приборы – СПб., Лениздат, 1994.