Сила в природе: сила упругости

Автор работы: Пользователь скрыл имя, 25 Сентября 2012 в 19:42, доклад

Краткое описание

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Вложенные файлы: 1 файл

Ишмурат.docx

— 61.26 Кб (Скачать файл)

Министерство образования  Республики Башкортостан

ГАОУ СПО “Уфимский топливно-энергетический колледж”

 

 

 

 

                                          Специальность:  131016

 

 

 

 

 

 

 

 

 

 

Самостоятельная работа:

“Сила в природе: сила упругости”

 

 

 

 

 

                                                                  Выполнил: Сынбулатов И.Х

                                                Проверила: Биктимерова И.М.

 

 

 

 

 

 

УФА-2012

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия 

Деформация растяжения (x > 0) и сжатия (x < 0). Внешняя сила 


При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации: 

F= Fупр = –kx.



Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называетсяотносительной деформацией, а отношение σ = F / S = –Fупр S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ: 



Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·10Н/м2, т. е. на пять порядков меньше.

Закон Гука может быть обобщен и  на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Рисунок 1.12.2.

Деформация изгиба. 


Упругую силу   действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести:   Сила   с которой тело действует на стол, называется весом тела.

В технике часто применяются  спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называютжесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

Рисунок 1.12.3.

Деформация растяжения пружины. 

  


В отличие от пружин и некоторых  эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному  закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

 

Модель. Закон Гука



Информация о работе Сила в природе: сила упругости