Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 07:04, дипломная работа
Выпускаемые промышленностью накопители информации представляют собой гамму запоминающих устройств, с различным принципом действия, физическими и техническими эксплуатационными характеристиками. Носитель информации это материальный объект, используемый для хранения информации Накопитель же это механическое устройство, управляющее записью, хранением и считыванием данных. Различают накопители на гибких магнитных дисках и накопители на жестких магнитных дисках. Основным свойством и назначением накопителей информации является ее хранение и воспроизведение.
Прямой и последовательный доступ
Начнем с магнитных лент. При использовании магнитных лент информация записывается в виде файлов с последовательным доступом. Последовательный доступ означает, что для чтения какого-либо файла требуется вначале прочитать (или просмотреть) все предыдущие файлы. При записи информация может добавляться в конец ленты, после той информации, которая была записана в последний раз.
Для такого устройства, как магнитный диск, возможна запись информации либо последовательным, либо прямым методом доступа. Использование прямого метода доступа позволяет программе позиционировать головки сразу нужный файл. Например, при чтении записи можно задать номер сектора на определенной дорожке и номер головки, где она расположена, либо смещение записи относительно начала файла в байтах.
Как правило, прямой метод доступа более эффективен.
Для обеспечения управления работой НГМД и согласования интерфейсов дисководов с интерфейсом системной шины в составе ПЭВМ необходимо электронное оборудование адаптера НГМД.
Адаптер НГМД переводит команды, поступающие с ПЗУ BIOS в электрические сигналы управляющие НГМД, а также преобразует поток импульсов, считываемых магнитной головкой, в информацию воспроизводимую ПЭВМ. Конструктивно электронное оборудование адаптера НГМД может быть размещено на системной плате, либо совмещено с оборудованием других адаптеров (НЖМД портов и т.д.). Большинство адаптеров предназначено для работы с дисководами использующими код МЧМ. Основным функциональным блоком адаптера НГМД является контроллер НГМД, выполненный конструктивно обычно в виде БИС [4]. Наиболее часто в качестве БИС контроллеров НГМД используются ИМС 8272 фирмы Intel и ИМС 765 фирмы NEC.
Для центрального процессора адаптер НГМД доступен программно через регистр управления и два порта контроллера НГМД - регистр состояния и регистр данных.
Значение отдельных разрядов регистра управления определяют: выбор НГМД, сброс контроллера, включение двигателя, разрешение прерывания и ПДП. Для организации обмена информацией между центральным процессором и адаптером используется регистр состояния контроллера, доступный только для считывания.
Регистр данных служит для запоминания данных, команд, параметров и информации о состоянии НГМД. При записи регистр данных используется как буфер, в который побайтно подаются данные от процессора.
Дешифратор адреса распознает базовые адреса программно доступных регистров.
Контроллер НГМД выполняет набор команд, среди которых основные - позиционирование, форматирование, считывание, запись, проверка состояния и др. Исполнение каждой команды имеет три фазы: подготовительную, исполнения и заключительную. В подготовительной фазе центральный процессор передает контроллеру управляющие байты, которые включают код операции и параметры, необходимые для ее исполнения. На основании управляющей информации в фазе исполнения контроллер выполняет действия, заданные командой. В заключительной фазе через регистр данных считывается содержимое регистров состояния, хранящих информацию о результатах выполнения заданной команды и состоянии НГМД.
Правильно эксплуатируемый диск выдерживает несколько месяцев непрерывной работы на одной дорожке, но ведь таких дорожек на диске несколько десятков. Дискеты высокого качества известных и опытных изготовителей гарантируют в среднем 70 млн. проходов головки по дорожке, что на практике сводится к более чем 20-летней интенсивной эксплуатации. Правила работы с дисками рекомендуют не дотрагиваться до поверхности диска руками, не держать диски вблизи сильного магнитного паля, не подвергать их нагреванию. И конечно, лучше всего сделать его копию на случай выхода диска из строя. На этом месте я хотел бы перейти к рассмотрению накопителей на жестких магнитных дисках.
Эволюция персональных компьютеров связана с изменениями накопителей на жестких дисках. Жесткие магнитные диски, или "винчестеры", являются обязательным компонентом персонального компьютера. Первые ПК не имели таких накопителей, в компьютерах PC XT эти устройства уже использовались, а в PC/AT жестким дискам придавалось особое значение. Первый накопитель на жестких магнитных дисках (НЖМД) появился в далеком июне 1956 г. И даже его создатель Рейнолд Джонсон, руководитель одной из исследовательских лабораторий IBM, скорее всего, вряд ли мог предположить, сколь огромное влияние окажет его изобретение на все последующее развитие компьютерной индустрии. Первый жесткий диск имел емкость около 5 Мбайт. Устройство состояло из 50 дисков диаметром 24 дюйма, вращающихся с частотой 1200 об/мин, среднее время поиска составляло около 1 с.
Наименование диска - жесткий - подчеркивает его отличие от гибкого диска: магнитное покрытие наносится на жесткую подложку. Термин жесткий диск (hard disk) используется, в основном, в англоязычных странах. В продаже первый накопитель на жестких дисках появился в 1973 г. и имел кодовое обозначение "30/30" (двусторонний диск емкостью 30 + 30 Мбайт). Это кодовое обозначение совпадало с обозначением калибра легендарного охотничьего ружья "винчестер", использовавшегося при завоевании Дикого Запада. Такие же намерения были и у разработчиков жесткого диска; наименование "винчестер" получило широкое распространение. В настоящее время как основными производителями, так и дочерними фирмами выпускаются несколько десятков типов накопителей на жестких дисках. Зачастую используются оригинальные конструкционные материалы, имеются отличия в расположении узлов, но принципы работы большинства накопителей одинаковы[5].
Накопители на жестких дисках объединяют в одном корпусе носитель (носители) и устройство чтения/записи, а также, нередко, и интерфейсную часть, называемую собственно контроллером жесткого диска. Жесткий диск - это несколько алюминиевых пластин, покрытых магнитным слоем, которые вместе с механизмом считывания и записи заключены в герметически закрытый корпус внутри системного блока. Накопитель на жестком диске, выглядит как прочный металлический корпус, к которому снизу прикреплена печатная плата с электронными компонентами (Рис 4 Приложения 1). Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя (Рис. 5 Приложения 1). Кроме того, корпус экранирует накопитель от электромагнитных помех. В корпусе же находятся элементы для закрепления накопителя в компьютере. Внутри корпуса находятся все механизмы и некоторые электронные узлы (Рис 6 Приложения 1). Механизмы — это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение. Кроме того, у некоторых типов накопителей внутри находится воздушный фильтр, который адсорбирует образующиеся во время работы частицы пыли. Вскрывать корпус можно только в производственных условиях, в так называемой "чистой зоне", что исключает попадание внутри пыли и других вредных веществ. Накопителя зарубежных фирм, как правило, имеют специальную надпись на верхней крышке корпуса. Надпись обычно выполняет роль предохранительной пломбы и гласит следующее: "Вскрытие изделия, прекращает действие гарантий"[8].
На лицевой панели накопителя зачастую можно увидеть светодиодный индикатор. Этот индикатор включается тогда, когда происходит обращение к данному НЖМД. В ПК типа IBM PC/XT старых моделей, при использовании двух НЖМД, в исходном состояния оба индикатора выключены и включение одного из них происходит только на время активизации контроллером линии интерфейса «выбор». В ПК типа IBM PC/AT и в IBM PC/XT новых моделей индикатор одного из НЖМД постоянно включен, т.к. контроллер не сбрасывает сигнал «выбор» того НЖМД, обращение к которому было последним. Соответственно, при использовании одного НЖМД в этих моделях, он включен постоянно. Истинный факт обращения к НЖМД индицируется на передней панели ПК.
Диск представляет собой круглую металлическую пластину с очень ровной поверхностью, покрытую тонким ферромагнитным слоем. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.
Количество дисков может быть различным, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.
Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить".
Магнитное покрытие диска представляет
собой множество
мельчайших областей самопроизвольной (спонтанной)
намагниченности. Для наглядности представьте
себе, что диск покрыт слоем очень маленьких
стрелок от компаса, направленных в разные
стороны. Такие частицы-стрелки называются
доменами. Под воздействием внешнего магнитного
поля собственные магнитные поля доменов
ориентируются в соответствии с его направлением.
После прекращения действия внешнего
поля на поверхности диска образуются
зоны остаточной намагниченности. Таким
образом сохраняется записанная на диск
информация. Участки остаточной намагниченности,
оказавшись при вращении диска напротив
зазора магнитной головки, наводят в ней
электродвижущую силу, изменяющуюся в
зависимости от величины намагниченности.
Для корректного считывания данных увеличение
плотности записи требует соответствующего
уменьшения так называемой «магнитной
толщины». Она численно равна произведению
величины магнитного момента на толщину
магнитного слоя. Традиционное решение,
применявшееся до настоящего времени,
— использование более тонкого магнитного
слоя, что означает, в свою очередь, меньшую
энергию магнитного домена. Но чем меньше
размер магнитного домена, направление
намагниченности которого определяет
бит информации (0 или 1), тем меньшая энергия
требуется для изменения направления
намагниченности на противоположное.
Возникает впечатление, что снижать размер
домена выгодно, но как только энергия,
необходимая для изменения направления
намагниченности, будет сравнима по порядку
с тепловой энергией частиц, жесткие диски
больше нельзя будет считать надежным
способом хранения данных. Ведь повышение
температуры на несколько градусов будет
автоматически означать потерю данных
без возможности их восстановления, так
как направление намагниченности будет
произвольно изменяться под действием
тепла. Такое явление принято называть
эффектом супер парамагнетизма. Разумеется,
с серийными образцами ничего подобного
не произойдет, поскольку ни один производитель
не пойдет на увеличение объема в обмен
на риск потери данных. Тем не менее, количество
информации растет с каждым днем, а значит,
необходимость увеличивать объемы хранимой
на дисках информации существует, т. е.
в какой-то момент место НЖМД могут занять
накопители данных, работающие по совершенно
другой технологии. Исследования в этом
направлении уже ведутся.
Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Для того чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности.
Головки перемещаются с помощью прецизионного шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. Держатель головки представляет собой крыло, парящее над поверхностью, благодаря тому, что поверхность увлекает с собой частицы воздуха, создавая таким образом набегающий на крыло поток. На поверхности дисков в результате записи информации образуются намагниченные участки в форме концентрических окружностей. Они называются магнитными дорожками. Дорожка это концентрическое кольцо на поверхности магнитного диска, на которое записываются данные, а сектор - деление дисковых дорожек, представляющее собой основную единицу размера, используемую накопителем. Секторы обычно содержат по 512 байтов.
В настоящее время, для позиционирования головок чтения/записи, наиболее часто, применяются шаговые и линейные двигатели механизмов позиционирования и механизмы перемещения головок в целом.
В системах с шаговым механизмом и двигателем головки перемещаются на определенную величину, соответствующую расстоянию между дорожками. Дискретность шагов зависит либо от характеристик шагового двигателя, либо задается серво-метками на диске, которые могут иметь магнитную или оптическую природу. Для считывания магнитных меток используется дополнительная серво-головка, а для считывания оптических - специальные оптические датчики.
В системах с линейным приводом головки перемещаются электромагнитом, а для определения необходимого положения служат специальные сервисные сигналы, записанные на носитель при его производстве и считываемые при позиционировании головок. Во многих устройствах для серво-сигналов используется целая поверхность и специальная головка или оптический датчик. Такой способ организации серво-данных носит название выделенная запись серво-сигналов. Если серво-сигналы записываются на те же дорожки, что и данные и для них выделяется специальный серво-сектор, а чтение производится теми же головками, что и чтение данных, то такой механизм называется встроенная запись серво-сигналов. Выделенная запись обеспечивает более высокое быстродействие, а встроенная - повышает емкость устройства.
Линейные приводы перемещают головки значительно быстрее, чем шаговые, кроме того, они позволяют производить небольшие радиальные перемещения "внутри" дорожки, давая возможность отследить центр окружности серводорожки. Этим достигается положение головки, наилучшее для считывания с каждой дорожки, что значительно повышает достоверность считываемых данных и исключает необходимость временных затрат на процедуры коррекции. Как правило, все устройства с линейным приводом имеют автоматический механизм парковки головок чтения/записи при отключении питания устройства.
Парковкой головок называют процесс их перемещения в безопасное положение. Это - так называемое "парковочное" положение головок в той области дисков, где ложатся головки. Там, обычно, не записано никакой информации, кроме серво-данных, это специальная "посадочная зона" (Landing Zone). Для фиксации привода головок в этом положении в большинстве ЖД используется маленький постоянный магнит, когда головки принимают парковочное положение - этот магнит соприкасается с основанием корпуса и удерживает позиционер головок от ненужных колебаний. При запуске накопителя схема управления линейным двигателем "отрывает" фиксатор, подавая на двигатель, позиционирующий головки, усиленный импульс тока. В ряде накопителей используются и другие способы фиксации - основанные, например, на воздушном потоке, создаваемом вращением дисков. В запаркованном состоянии накопитель можно транспортировать при достаточно плохих физических условиях (вибрация, удары, сотрясения), т.к. нет опасности повреждения поверхности носителя головками. В настоящее время на всех современных устройствах парковка головок накопителей производится автоматически внутренними схемами контроллера при отключении питания и не требует для этого никаких дополнительных программных операций, как это было с первыми моделями.
Во время работы все механические части накопителя подвергаются тепловому расширению, и расстояния между дорожками, осями шпинделя и позиционером головок чтения/записи меняется. В общем случае это никак не влияет на работу накопителя, поскольку для стабилизации используются обратные связи, однако некоторые модели время от времени выполняют рекалибровку привода головок, сопровождаемую характерным звуком, напоминающим звук при первичном старте, подстраивая систему к изменившимся расстояниям.
Число дисков, головок и дорожек накопителя устанавливается изготовителем исходя из свойств и качества дисков. Изменить эти характеристики нельзя. Количество секторов на диске зависит от метода записи. В одном секторе располагается 512 байт (в системе DOS). Зная эту величину, всегда можно рассчитать общий объем накопителя:
V - С • Н • S • В
где С - количество цилиндров; Н - количество головок; S - количество секторов на дорожку; В - размер сектора.
Описанное выше разбиение называется низкоуровневым (LowLewel) форматированием. Такое форматирование нижнего уровня чаще всего выполняет изготовитель, используя специальные программные средства (например, Speed Store или Disk Manager) или команды DOS. Перед первым использованием дисков необходимо произвести их логическое форматирование - специальным образом инициализировать их (с помощью программы format). Для обращения к жесткому диску используется имя, заданное латинской буквой С:. В случае, если установлен второй жесткий диск, ему присваивается следующая буква латинского алфавита D:.
Информация о работе Сравнительный анализ и характеристик НГМД и НЖМД