Термодинамика. Общее понятие

Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 22:43, реферат

Краткое описание

Начала термодинамики — совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.
Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Содержание

1. Термодинамика. Общее понятие 3
2. Первое начало термодинамики 3
3. Второе начало термодинамики 5
4. Третье начало термодинамики 7
6. Список литературы 10

Вложенные файлы: 1 файл

3 начала термодинамики - копия.docx

— 73.58 Кб (Скачать файл)

Министерство образования  и науки Российской Федерации

Федеральное государственное  бюджетное образовательное учреждение

высшего профессионального  образования

….

 

 

 

 

….

 

 

 

 

 

 

 

 

 

3 начала термодинамики.

 

 

 

 

 

 

 

Исполнитель:

 

….

 

 

 

 

 

 

 

 

 

 

 

Екатеринбург,… 
Содержание

 Стр.

1. Термодинамика. Общее  понятие                                                                          3

2. Первое начало термодинамики                                                                            3

3. Второе начало термодинамики                                                                              5

4. Третье начало термодинамики                                                                              7

6. Список литературы                                                                                               10

 

 

Термодинамика. Общее  понятие

 

Начала термодинамики — совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики  связана с тем, что термодинамика  описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Перечень начал термодинамики

  • Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим системам.
  • Второе начало термодинамики накладывает ограничения на направление термодинамических процессов, запрещая самопроизвольную передачу тепла от менее нагретых тел к более нагретым. Также формулируется как закон возрастания энтропии.
  • Третье начало термодинамики говорит о том, как энтропия ведет себя вблизи абсолютного нуля температур.
  • Нулевым (или общим) началом термодинамики иногда называют принцип, согласно которому замкнутая система независимо от начального состояния в конце концов приходит к состоянию термодинамического равновесия и самостоятельно выйти из него не может.

Уравнения состояния. При анализе термодинамических систем, помимо начал термодинамики, требуются уравнения состояния системы. Так же, как и начала, уравнения состояния не содержатся в термодинамике и должны быть взяты из опыта или из статистической физики. В отличие от начал термодинамики, уравнения состояния не носят всеобъемлющего характера, а применимы для конкретных термодинамических систем.

 

Первое начало термодинамики

 

Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Первое начало термодинамики  было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

 

Формулировка

Существует несколько  эквивалентных формулировок первого  начала термодинамики

В любой изолированной  системе запас энергии остаётся постоянным. Это — формулировка Дж. П. Джоуля (1842 г.).

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии  системы при переходе её из одного состояния в другое равно сумме  работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Это определение особенно важно для химической термодинамики[2] (ввиду сложности рассматриваемых процессов). Иными словами, внутренняя энергия является функцией состояния. В циклическом процессе внутренняя энергия не изменяется.

Изменение полной энергии  системы в квазистатическом процессе равно количеству теплоты , сообщённому системе, в сумме с изменением энергии, связанной с количеством вещества при химическом потенциале , и работы [3], совершённой над системой внешними силами и полями, за вычетом работы , совершённой самой системой против внешних сил

.

Для элементарного количества теплоты  , элементарной работы и малого приращения внутренней энергии первый закон термодинамики имеет вид:

.

Разделение работы на две  части, одна из которых описывает  работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.

Важно заметить, что  и являются полными дифференциалами, а и  — нет.

Частные случаи

Рассмотрим несколько  частных случаев:

  1. Если , то это означает, что тепло к системе подводится.
  2. Если , аналогично — тепло отводится.
  3. Если , то система не обменивается теплом с окружающей средой и называется адиабатически изолированной.

Обобщая: в конечном процессе элементарные количества теплоты могут быть любого знака. Общее количество теплоты, которое мы назвали просто  — это алгебраическая сумма количеств теплоты, сообщаемых на всех участках этого процесса. В ходе процесса теплота может поступать в систему или уходить из неё разными способами.

При отсутствии работы над  системой и потоков энергии-вещества, когда  , , , выполнение системой работы приводит к тому, что , и энергия системы убывает. Поскольку запас внутренней энергии ограничен, то процесс, в котором система бесконечно долгое время выполняет работу без подвода энергии извне, невозможен, что запрещает существование вечных двигателей первого рода.

Первое начало термодинамики:

  • при изобарном процессе

  • при изохорном процессе ( )

  • при изотермическом процессе

Здесь  — масса газа,  — молярная масса газа,  — молярная теплоёмкость при постоянном объёме,  — давление, объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.

 

Второе начало термодинамики

Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики  запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.

Второе начало термодинамики  является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.


Формулировки

Существуют несколько эквивалентных формулировок второго начала термодинамики:

  • Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему»[1] (такой процесс называется процессом Клаузиуса).
  • Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло у нагревателя, отдав холодильнику и совершив при этом работу . После этого воспользуемся процессом Клаузиуса и вернем тепло от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.

С другой стороны, предположим, что неверен постулат Томсона. Тогда  можно отнять часть тепла у  более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.

Таким образом, постулаты  Клаузиуса и Томсона эквивалентны.

Другая формулировка второго  начала термодинамики основывается на понятии энтропии:

  • «Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии).

Такая формулировка основывается на представлении об энтропии как  о функции состояния системы, что также должно быть постулировано.

Второе начало термодинамики  в аксиоматической формулировке Рудольфа Юлиуса Клаузиуса (R. J. Clausius, 1865) имеет следующий вид[2]:

Для любой квазиравновесной термодинамической системы существует однозначная функция термодинамического состояния , называемая энтропией, такая, что ее полный дифференциал .

В состоянии с максимальной энтропией макроскопические необратимые  процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Ограничения

С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала. Смотри также Демон Максвелла.

Второе начало термодинамики  и «тепловая смерть Вселенной»

Клаузиус, рассматривая второе начало термодинамики, пришёл к выводу, что энтропия Вселенной как замкнутой системы стремится к максимуму, и в конце концов во Вселенной закончатся все макроскопические процессы. Это состояние Вселенной получило название «тепловой смерти». С другой стороны, Больцман высказал мнение, что нынешнее состояние Вселенной — это гигантская флуктуация, из чего следует, что большую часть времени Вселенная все равно пребывает в состоянии термодинамического равновесия («тепловой смерти»)[3].

По мнению Ландау, ключ к разрешению этого противоречия лежит в области общей теории относительности: поскольку Вселенная является системой, находящейся в переменном гравитационном поле, закон возрастания энтропии к ней неприменим[4].

Поскольку второе начало термодинамики (в формулировке Клаузиуса) основано на предположении о том, что вселенная является замкнутой системой, возможны и другие виды критики этого закона. В соответствии с современными физическими представлениями мы можем говорить лишь о наблюдаемой части вселенной. На данном этапе человечество не имеет возможности доказать ни то, что вселенная есть замкнутая система, ни обратное.

Энтропия и критика эволюционизма

Второе начало термодинамики (в формулировке неубывания энтропии) иногда используется критиками эволюционной теории с целью показать, что развитие природы в сторону усложнения невозможно[5][6]. Однако подобное применение физического закона является некорректным, так как энтропия не убывает только в замкнутых системах (сравн. с диссипативной системой), в то время как живые организмы и планета Земля в целом являются открытыми системами.

 

Третье начало термодинами

Третье начало термодинамики (теорема Нернста) — физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.


Информация о работе Термодинамика. Общее понятие