Автор работы: Пользователь скрыл имя, 30 Октября 2014 в 20:01, реферат
Мощным толчком развития электроники на основе GaAs и родственных соединений явилось создание в 1967 г. в ФТИ им.А.Ф. Иоффе под руководством Ж.И.Алферова эффективно инжектирующих гетеропереходов в системе GaAs,AlGaAs, близких по своим свойствам к идеальным. Создание идеальных гетеропереходов в системе GaAs,AlGaAs позволило не только изучить специфические особенности электрических и оптических явлений в гетероструктурах, но и способствовало появлению новых идей по применению гетероструктур в полупроводниковых приборах, поиску других материалов, образующих идеальные гетеропереходы, а также разработке новых методов получения гетероструктур
Введение 3
1. Горячие носители заряда в гетероструктурах с селективным легированием 4
2. Транзисторы с инжекцией горячих электронов 4
3. Транзисторы на горячих электронах
8
4. Горячие электроны в резистивном состоянии тонких пленок сверхпроводников 11
Заключение 16
Список использованных источников 17
Когда же температура становится выше критической, мы имеем дело с обычным металлом, у которого электрическое сопротивление относительно слабо зависит от температуры, особенно при низких температурах. При протекании электрического тока в металле выделяется тепло Джоуля-Ленца и металл нагревается. Только избавившись от нагрева целиком всего металла, можно непосредственно изучать неравновесные явления в электронном газе металла. Оказывается, для этого достаточно приготовить металл в виде очень тонкой пленки на диэлектрической подложке и сформировать из нее узкую и короткую полоску.
Это легко понять, если учесть, что тепло выделяется в объеме металла, а уходит через его поверхность. Для тонкой пленки с уменьшением ее толщины поверхность соприкосновения с подложкой не меняется, а объем пропорционально уменьшается, так что теплоотвод от единицы объема металла растет. Однако теплопроводность подложки конечна, что приводит к ее нагреву под пленкой и, в свою очередь, к нагреву пленки. Если же мы сделаем малыми размеры в плане, мы, конечно же, не изменим отношение объема к поверхности, но существенно уменьшим полное количество выделяемого тепла, позволив ему растекаться по подложке во все стороны. Практически приведенные выше качественные рассуждения приводят к искомому результату для ультратонких пленок (толщиной ~ 10 нм), имеющих размеры в плане ~ 1 мкм.
Интересные физические явления, важные также для практических применений, возникают не столько при протекании тока, сколько при взаимодействии с электромагнитным полем. Когда электрон в тонкой металлической пленке поглощает квант энергии электромагнитного поля (фотон), недостаточный по величине для внешнего фотоэффекта, электрон приобретает избыточную энергию, оставаясь в металле. Таких электронов может быть много, однако специальной физической проблемой является возможность приписать этому коллективу определенное значение температуры, то есть рассматривать их как горячие электроны. Эта проблема решается в какой-то мере аналогично имеющей место в идеальном газе. Хотя идеальный газ - самая простая модель обычного реального газа, даже в ней важную роль играют соударения между атомами и молекулами. Именно они обеспечивают установление равновесного распределения молекул по энергии и дают тем самым возможность характеризовать газ определенным значением температуры. В очень тонких металлических пленках при низких температурах межэлектронные столкновения оказываются достаточно частыми, чтобы можно было описывать их коллектив с помощью электронной температуры. Однако ситуация здесь гораздо более сложная, чем в идеальном газе. Для электрона в кристалле есть и другая возможность потерять энергию - возбудить тепловые колебания атомов или молекул, которые распространяются в виде упругих волн в решетке ионов. На языке частиц такие волны называются фононами. В чистых и совершенных металлических кристаллах обычно электрон, обладающий избыточной энергией, быстрее испускает фононы и теряет энергию, чем передает ее другим электронам. Но очень тонкие металлические пленки, как правило, несовершенны, и это меняет ситуацию. В них много кристаллических дефектов и примесей, рассеивающих электроны. Даже то, что электронный газ заключен между двумя поверхностями самой пленки, расположенными на малом расстоянии друг от друга, также приводит к ограничению свободного движения электронов. При рассеянии на примесях, дефектах кристаллической решетки и поверхностях пленки два свободных электрона, оказавшись один раз вблизи друг друга, гораздо дольше остаются рядом, чем в совершенном массивном металле. Оказывается, что межэлектронные столкновения при этом происходят гораздо чаще. Мы не будем углубляться дальше в это сложное квантовомеханическое явление. Подчеркнем лишь еще раз, что оно обеспечивает перераспределение избыточной энергии среди электронов быстрее, чем испускание ими фононов.
При этом энергия не теряется, она остается в электронной подсистеме, перемешивается в ней, и лишь после этого происходит испускание фононов. Этот последний процесс тем не менее достаточно быстрый: характерное время остывания электронной подсистемы, испускающей фононы, близко ко времени электрон-фононного взаимодействия и зависит от вида металла и температуры. Для трех сверхпроводников, которые мы здесь будем рассматривать в качестве конкретных примеров, при температуре, близкой к критической, оно составляет по порядку величины: для тонких пленок Nb ~ 10- 9 c, для NbN ~ 10- 11 c, а для высокотемпературного сверхпроводника YBaCuO ~ 10- 12 c. Все же время межэлектронного взаимодействия, как уже было сказано, еще меньше или того же порядка величины. Существенным следствием является то, что энергия даже большого по величине кванта (для света с малой длиной волны) не теряется даже частично, успевая перераспределиться среди электронов при их столкновении друг с другом. В этом случае величина температуры электронов зависит лишь от мощности излучения и не зависит от частоты.
Однако вопрос о зависимости избыточной электронной температуры от частоты электромагнитного излучения требует еще одного разъяснения. Дело в том, что мы еще ничего не сказали о частотной зависимости поглощения излучения. Оказывается, что для очень тонкой металлической пленки доля поглощенной мощности падающего излучения довольно велика и частотно независима вплоть до очень высоких частот, соответствующих видимому свету или даже ультрафиолетовому.
Таким образом, сопротивление тонкой сверхпроводящей пленки в резистивном состоянии быстро и с высокой чувствительностью реагирует на электромагнитное излучение (растет пропорционально мощности независимо от его частоты в очень широких пределах). На этой основе разработан новый нелинейный элемент, перспективный для использования в целом ряде областей.
Заключение
Транзистор представляет собой полупроводниковый прибор, предназначенный для использования в устройствах, осуществляющих генерацию и усиление электрических колебаний. Основой любого транзистора является кристаллическая пластинка полупроводника, в котором используются те или иные свойства полупроводникового материала и электронно – дырочных переходов, в результате чего представляется возможным с помощью слабых управляющих токов или напряжений получать более мощные электрические колебания требуемого вида.
Подобно тому, как существует большое множество разновидностей диодов, известно большое число видов и разновидностей транзисторов.
Транзисторы различаются по числу основных видов носителей заряда, используемых при работе прибора. Транзисторы, в которых используются оба вида носителей, дырки и электроны, называются биполярными. В зависимости от геометрической структуры размещения зон с различной проводимостью они могут быть прямой (p – n – p) или обратной проводимости (n – p – n). Транзисторы, у которых используется только один основной носитель заряда, например, только дырки или только электроны, называются полярными
Самыми известными и доступными являются биполярные транзисторы прямой (p – n – p) и обратной (n – p – n) проводимости. Менее известны и доступны полевые транзисторы с каналом p и n типа.
Список использованных источников
Учебное пособие для студентов факультета нано- и биомедицинских технологий. —Саратов, 2013.
транзисторные структуры и клеточные автоматы (элементы теории, руководство и задания к лабораторным работам). Методическое пособие для студентов физического факультета. – Казань, 2007.
2003.
1974.