Физика и музыка

Автор работы: Пользователь скрыл имя, 22 Февраля 2012 в 21:32, курсовая работа

Краткое описание

Для понимания предлагаемого материала необходимо знать следующие разделы программы:
– основные характеристики колебаний;
– гармонические колебания;
– стоячие волны;
– объективные и субъективные характеристики звука;
– сложение колебаний.

Содержание

Введение 3
1 Электромагнитные колебания в музыке 4
2 Музыкальные звуки 13
Заключение 30

Вложенные файлы: 1 файл

физика и музыка контрольная работа.doc

— 451.50 Кб (Скачать файл)

Посмотрим на частоты, соответствующие звукам какого-либо небольшого диапазона. Например, от «до» первой октавы до «ми» второй октавы:

до 261,7 Гц
до# 277,2 Гц
ре 293,7 Гц
ре# 311,1 Гц
ми 329,6 Гц
фа 349,2 Гц
фа# 370,0 Гц
соль 392,0 Гц
соль# 415,3 Гц

ля 440,0 Гц
ля# 466,7 Гц
си 493,9 Гц
до 523,4 Гц
до# 554,4 Гц
ре 587,3 Гц
ре# 622,6 Гц
ми 659,3 Г

При необходимости легко вычислить значения частот, соответствующих нотам других октав, зная правило удвоения частоты при переходе от одной октавы к другой. В приведенном списке от каждой ноты до соседней с ней – полутон. Следовательно:

до – до# – малая секунда;               до – ре – большая секунда;
до – ре# – малая терция;              до – ми – большая терция;
до – фа – кварта и т.д.

Если мы посмотрим на соотношения частот в разных созвучиях, построенных, например, от ноты «до» первой октавы, то увидим, что они таковы:

Малая секунда............              277,2 : 261,7 = 1,059...
Большая секунда..........              293,7 : 261,7 =  1,122...
Малая терция.............              311,1 : 261,7 =  1,188...1,2 = 6 : 5.
Большая терция.........              329,6 : 261,7=  1,259...  1,25 = 5 : 4.
Кварта.........................              349,2 : 261,7= 1,310...  4 : 3.
Квинта......................              392,0 : 261,7 =  1,498...  1,5 = 3 : 2.
Секста...........................              440,0 : 261,7 =  1,681...
Септима......................              493,9 : 261,7 = 1,887...
Октава.........................              523,4 : 261,7 = 2 : 1.

Как видим, те созвучия, которые для слуха более приятны (они в списке выделены), имеют лучшую или даже идеальную кратность частот, либо отношение, очень близкое к отношению небольших целых чисел. Недаром аккорды (и в особенности гитарные) состоят в основном из терций! Добавляя в аккорд новый звук, надо следить за тем, чтобы он образовывал «приятное» созвучие хотя бы с одним из уже имеющихся звуков. Например, при переходе от обычного аккорда (трезвучия) к септаккордам (так называемым «семеркам»), четвертая нота образует терцию с третьей, а поэтому и аккорд звучит красиво.

Аппликатура наиболее простой пары аккордов «ля-мажор» и «ля-мажор-септаккорд» (А и А7) приведена на рис. 8.

Рисунок 8

 

При переходе от ноты к ноте частота звука повышается примерно в 1,06 раза. Этот коэффициент постоянен для всего нотного диапазона. А вот разность частот (Dn) между соседними нотами с ростом частоты (т.е. с повышением тона) увеличивается. Это хорошо видно хотя бы из приведенной выше таблицы. Можно сказать, что в диапазоне частот ноты расположены неравномерно: более низкие ближе друг к другу, а более высокие дальше. Этим и объясняется неравномерность расстановки ладов на грифе гитары: с ростом номера лада порожки располагаются все чаще (рис. 9).

Рисунок 9

 

Точное значение коэффициента частоты равно 1,059228... Если при переходе от лада к ладу это значение не выдерживается, то с увеличением номера лада ошибка в частоте будет возрастать и гитару будет невозможно настроить правильно. Чем точнее расставлены порожки на грифе, тем гитара дороже, но тем и приятнее звучание, и настраивать гитару легче.


2 Музыкальные звуки

 

Установить различие между музыкой и шумом довольно трудно, так как то, что может казаться музыкой для одного, может быть просто шумом для другого. Не­которые считают оперу совер­шенно немузыкальной, а дру­гие любят ее. Ржание лошади или скрип нагруженного лесом вагона может быть шумом для большинства людей, но музыкой для лесопромышленника. Любя­щим родителям крик новорож­денного ребенка может казать­ся музыкой. Но для большин­ства из нас такие звуки пред­ставляют просто шум. Однако большинство людей согласится с тем, что звуки, возбуждаемые колеблющимися струнами, язычками, камерто­нами, столбами воздуха и вибрирующими голосовыми связками певца, музыкальны. Но если так, то что же существенно в воз­буждении музыкального звука, или тона?

Для того чтобы ответить на этот вопрос, воспользуемся сире­ной, изображенной на рис.10.

 

Рис. 10

 

Будем быстро вращать диск с по­стоянной скоростью и вдувать струю воздуха через стеклянную трубку в ряды отверстий диска по порядку. Мы увидим, что ряды, имеющие отверстия, расположенные на равном расстоянии друг от друга, производят приятные музыкальные звуки, а звук от ряда неравномерно расположенных отверстий представляет шум.

Когда поток воздуха проходит сквозь отверстие, то на противоположной стороне диска получается сгущение. Воздух не может пройти через промежутки между отверстиями, и в эти моменты возникают разрежения. Такие воздушные толчки производятся через одинаковые промежутки времени рядами равномерно распо­ложенных отверстий, другие же ряды дают толчки через различ­ные времена.

Таким образом, наш опыт показывает, что для возбуждения музыкального звука существенно, чтобы колебания происходили через равные промежутки времени. Колебания струн, камертонов и т. н. имеют такой характер; колебания поездов, вагонов с лесом и т. п. происходят через неправильные, неравномерные промежут­ки времени, и производимые ими звуки представляют только шум.

Что называется высотой тона? Высота тона характеризует, нисколько «тонок» или «груб» звук. Для того чтобы получить самые высокие тоны рояля, мы ударяем по клавишам, расположен­ным на конце правой части клавиатуры; самые низкие тоны полу­чаются с левого края. Чем объясняется это различие в высоте тона?

Для того чтобы помочь ответить на этот вопрос, воспользуемся опять той же сиреной. Диски имеют ряды в 24, 30, 36 и 48 отвер­стий, расположенных на одинаковых расстояниях. Вращая диск с постоянной скоростью, будем вдувать воздух по порядку в каж­дый ряд отверстий, начиная с внутреннего ряда. Каждый ряд воз­будит музыкальный тон, причем каждый следующий ряд даст тон выше предшествующего. Теперь будем изменять скорость враще­ния диска при вдувании воздуха в один и тот же ряд. Мы увидим, что увеличение скорости повышает тон, уменьшение понижает тон. Что показывают результаты этого опыта?

Увеличивая скорость диска или пользуясь рядом с большим количеством отверстий, вы увеличиваете число толчков или волн в секунду, посылаемых через воздух. Таким образом, оказывается, что высота тона звука зависит от числа толчков (импульсов) или волн в секунду, приходящих от звучащего тела к уху. Так как вы­соту тона, как таковую, трудно измерять, физики предпочитают выражать ее через частоту, которую измерить легко.

Можно задать вопрос: распространяются ли звуки различных частот с одинаковыми скоростями? Если высокие звуки распро­страняются быстрее или медленнее, чем низкие звуки, то, как будет звучать находящийся в некотором отдалении оркестр, в состав которого входят бас и флейта? Действительно ли оркестр звучит так? Каково ваше заключение?

Что называется мажорной диатонической гаммой? Первые три тона, производимые ря­дами в 24, 30 и 36 отверстий, составляют мажорное трезвучие. Диск с 8 рядами отверстий, а именно с 24, 27, 30, 32, 36, 40, 45 и 48 от­верстиями воспроизвел бы все тоны мажорной диатонической гам­мы. Даже при вращении с различными постоянными скоростями в каждом случае воспроизводилась бы точно эта гамма. Если бы диск вращался со скоростью 10-у об/сек, то частоты были бы такими, как показано в таблице 1

 

Таблица 1

Число отверстий, Вк

24

27

30

32

36

40

45

48

Частота колебаний в секунду

256

288

320

341,3

384

426,6

480

512

Отношение чисел ко­лебаний

1

9/8

5/4

4/3

3/2

5/3

15/8

2

Тоны

С

D

Е

F

G

А

В

С`

Названия

до

ре

ми

фа

соль

ля

си

до

 

Тон, имеющий частоту в 256 колебаний в секунду, называется до (С) средней октавы. Гамма, приведенная в этой таблице, известна под названием до мажор, где С является основным тоном, или тоникой.

Числа 24, 27, 30 и т. д. являются относительными числами коле­баний, частоты являются абсолютными числами колебаний. Отно­шения получаются путем деления каждого относительного числа колебаний на первое (24). Эти отношения одинаковы для всех ма­жорных гамм, независимо от того, с какого основного тона они на­чинаются.

Гаммы всегда называются по тонике, например: до мажор, ре мажор и т.д. Полная гамма до мажор и соответствующие названия (применимые к любой гамме) вместо с отношениями колебаний и частотами приведена на рисунке 11.

 

Рис. 11 Соотношения между тонами мажорной диагностической гаммы

 

Ближайшим тоном, следующим за С', является D' (ре'), частота которого 576 колебаний в секунду.

Тоны С, Е и G образуют тоническое трезвучие гаммы до мажор, так как нижний тон является тоникой этой гаммы. Отметьте, что 24:30:36=4:5:6. Любая группа тонов с таким отношением частот составляет мажорное трезвучие. Обратившись к гамме до мажор, мы можем обнаружить в ней еще два других мажорных трезвучия: F, А и С' — субдоминантное трезвучие, и G, В и D1 — доминант­ное трезвучие. Так как эти три трезвучия содержат все тоны мажорной гаммы, то можно сказать, что эта гамма на них основана. С по­мощью рис. 11, на котором сведены все эти данные, можно уяс­нить себе все соотношения.

Что называется музыкальным интервалом? Мы уже знаем, что диск нашей сирены дает мажорную гамму независимо от ско­рости вращения; иначе говоря, существенное значение имеют не абсолютные частоты, а относительные. До тех пор, пока остаются постоянными отношения колебаний, сохраняются и соответствую­щие отношения между высотами тонов.

Термин музыкальный интервал относится к относительным ча­стотам двух тонов, а относительная частота представляет собой отношение, а не разность между частотами. Когда это отношение равно 2:1, как в случае С':С==512:256, или 48:24, интервал со­ставляет октаву. Отношение между 3-м и 1-м тонами мажорной гаммы равно 5:4 (30:24), как в случае Е:С. Этот интервал пред­ставляет собой большую терцию.

Другими важными интервалами являются: кварта (32:24, или 4/3), квинта (36:24, или 3/2), секста (40:24, или 5/3) и малая терция (36:30, или 6/5), как С:Е в гамме до мажор. Очевидно, октава — это восьмой интервал. Отметьте, сколько сумеете, ука­занных интервалов в гамме до мажор. Музыкант может сразу опо­знать эти интервалы, если взять их на музыкальном инструменте или если спеть их.

 

Рис. 12.  клавиши рояля

 

Для чего служат черные клавиши на рояле и в органах? Как мы уже указали, в качестве основного тона мажорной гаммы можно взять любой тон гаммы до мажор. Если взять тон В1 за тонику, то частота будет 240 колебаний в секунду (480:2); второй тон будет со­ставлять 9/8 от 240, или 270 колебаний в секунду; третий — 5/4 от 240, или 300 колебаний в секунду, и т. д. На рис. 3 сопостав­лены гаммы ре мажор и до мажор. Заметьте, что только для трех белых клавиш частоты соответствуют частотам нашей вновь обра­зованной гаммы, а именно: В1 Е и В. Другие же частоты попадают в промежутки между частотами гаммы до мажор, приблизительно в середину.

Таким образом, если мы будем играть гамму ре мажор, то нам необходимо добавить между белыми клавишами еще пять других. Такими клавишами и являются черные, показанные на рисунке. Черная клавиша между C и D обозначается либо С# (до-диез) или DЬ (ре-бемоль); черная клавиша между F и G обозначается как F# или GЬ и т. д. Без применения черных клавиш игра на рояле, пение и сочинение музыкальных произведений ограничивались бы толь­ко одной гаммой — натуральной гаммой до мажор. Она так назы­вается потому, что не содержит ни диезов, ни бемолей.

Что называется равномерно темперированной гаммой? Отме­тим, что на рис. 29.3 показаны как гамма ре мажор, так и гаммы до мажор и си мажор. Приведенные здесь частоты для гаммы ре мажор ставят задачу, которая не разрешается введением черных клавиш. Частоты для ми и ля в гамме ре мажор не совпадают с частотами их в гамме до мажор. Таким образом, если мы хотим сыграть гамму ре мажор совершенно точно, нам необходимо до­бавить еще клавиши. Если мы будем рассчитывать идеальные гаммы для всех клавиш, в том числе и для черных, взятых за исход­ные, то мы обнаружим еще много других расхождений, и для того, чтобы сыграть все гаммы идеально, следовало бы добавить еще око­ло 70 клавиш на октаву. Разумеется, играть на таком сложном инструменте было бы очень трудно.

Эта задача разрешается путем применения равномерно темпе­рированной, или просто темперированной, гаммы, предложенной впервые Иоганном Себастьяном Бахом (1685—1750). Отмеченные выше расхождения настолько незначительны, что можно пожерт­вовать простыми отношениями идеальной гаммы и взять вместо них достаточно близкие для того, чтобы удовлетворить музыкаль­ному слуху. Таким образом, октава делится на 12 равных интер­валов, называемых полутонами, или хроматическими полутонами. Так как интервал в октаву равен все еще 2:1, то каждый интервал в полтона имеет отношение, равное корню 12-й степени из 2, что составляет приблизительно 1,06. Таким образом, частоту любого тона гаммы можно получить, умножив частоту предыдуще­го, более низкого тона на 1,06.

Информация о работе Физика и музыка