Физика пласта

Автор работы: Пользователь скрыл имя, 16 Сентября 2013 в 20:37, реферат

Краткое описание

На заре цивилизации нефть не играла большой роли в быту и технике. До нас дошли скупые сведения о том, что она применялась греками, египтянами и ассирийцами преимущественно для медицинских целей, в строительном деле (асфальт), при изготовлении туши, в военном деле ("греческий огонь"), а также для освещения комнат и смазки колёс.
Признание как дешёвого топлива и источника ценных продуктов нефть получила только за последние сто лет. В данный момент развитие техники и промышленности невозможно себе представить без использования нефти и продуктов её переработки.
Из нефти вырабатываются горючее для двигателей внутреннего сгорания, топлива для газовых турбин и котельных установок, смазочные масла, битумы для дорожных покрытий, сажа для резиновой промышленности, кокс для электродов и множество других промышленных и потребительских товаров.

Вложенные файлы: 1 файл

ФИЗИКА ПЛАСТА.doc

— 774.00 Кб (Скачать файл)

Предполагается, что продуктивные пласты сначала  были насыщены водой. Водой были заполнены  капилляры, трещины, каналы.

При миграции углеводороды, вследствие меньшей плотности, стремятся к верхней части пласта, выдавливая вниз воду. Вода легче всего уходит из трещин и каналов, из капилляров вода не уходит в силу капиллярных явлений. Таким образом, в пласте остаётся связанная вода.

Чтобы определить количество углеводородов, содержащихся в продуктивном пласте, необходимо определить насыщенность порового пространства породы нефтью, водой и газом.

Водонасыщенность SВ – отношение объёма открытых пор, заполненных водой к общему объёму пор горной породы. Аналогично определение нефте- и газонасыщенности:

 

. (1.37)

 

Обычно для  нефтяных месторождений SВ = 6-35%; SН = 65-94%, в зависимости от созревания пласта.

Для нефтяных месторождений  справедливо следующее соотношение:

 

SН + SВ = 1.   (1.38)

 

Для газонефтяных месторождений:

 

SВ + SН + SГ  = 1.  (1.39)

 

Пласт считается  созревшим для разработки, если остаточная водонасыщенность SВ < 25%.

Остаточная водонасыщенность, обусловленная капиллярными силами, не влияет на основную фильтрацию нефти и газа.

При водонасыщенности до 25% нефте- и газонасыщенность пород  максимальная: 45-77%, а относительная фазовая проницаемость для воды равна нулю.

При увеличении водонасыщенности до 40%, фазовая проницаемость  для нефти и газа уменьшается в 2-2,5 раза. При увеличении водонасыщенности до 80% фильтрация газа и нефти в пласте стремится к нулю.

Экспериментально  изучался поток при одновременном  содержании в пористой среде нефти, воды и газа. Опытами установлено, что в зависимости от объёмного насыщения порового пространства различными компонентами возможно одно-, двух- и трёхфазное движение. Результаты исследования представлены в виде треугольной диаграммы (рис. 1.11).

 

Рис. 1.11. Области распространения одно-, двух- и трёхфазного потоков:

1. –  5% воды; 2. – 5% нефти; 3. – 5% газа.

 

Вершины треугольника соответствуют стопроцентному насыщению  породы одной из фаз; стороны, противолежащие вершинам, – нулевому насыщению  породы этой фазой. Кривые, проведённые на диаграмме, ограничивают возможные области одно-, двух-, и трёхфазного потока.

2. МЕХАНИЧЕСКИЕ  И ТЕПЛОВЫЕ  СВОЙСТВА ПОРОД

 

2.1. МЕХАНИЧЕСКИЕ  СВОЙСТВА ГОРНЫХ ПОРОД

 

Упругость, прочность  на сжатие и разрыв, пластичность –  наиболее важные механические свойства горных пород, влияющие на ряд процессов, происходящих в пласте в период разработки и эксплуатации месторождений.

Упругие свойства горных пород и влияют на перераспределения давления в пласте в процессе эксплуатации месторождения. Давление в пласте, благодаря упругим свойствам пород, перераспределяется не мгновенно, а постепенно после изменения режима работы скважины.

Упругость – свойство горных пород сопротивляться изменению их объёма и формы под действием приложенных сил. Абсолютно упругое тело восстанавливает первоначальную форму мгновенно после снятия напряжения. Если тело не восстанавливает первоначальную форму или восстанавливает её в течение длительного времени, то оно называется пластичным.

 

2.2. ТЕПЛОВЫЕ  СВОЙСТВА ГОРНЫХ ПОРОД

 

Тепловые свойства горных пород характеризуются удельной теплоёмкостью, коэффициентом температуропроводности и коэффициентом теплопроводности.

Удельная (массовая) теплоёмкость характеризуется количеством теплоты, необходимым для нагрева единицы массы породы на 1°С:

 

.  (2.1)

 

Этот параметр необходимо учитывать при тепловом воздействии на пласт.

Коэффициент теплопроводности (удельного теплового сопротивления) l характеризует количество теплоты dQ, переносимой в породе через единицу площади S в единицу времени t при градиенте температуры dT/dx:

 

.  (2.2)

 

Коэффициент температуропроводности (α) характеризует скорость прогрева пород (или скорость распространения изотермических границ).

Коэффициенты линейного (aL) и объёмного (aV) расширения характеризуют изменение размеров породы при нагревании:

.  (2.3)

  Взаимосвязь тепловых свойств горных пород выражается соотношением (2.4):

.  (2.4)

 

Теплоёмкость  пород зависит от минералогического  состава пород и не зависит от строения и структуры минералов. Удельная теплоёмкость увеличивается при уменьшении плотности породы и растёт с увеличение температуры и влажности в пределах 0,4-2 кДж/(кг×К).

Теплопроводность  и температуропроводность пород  очень низки по сравнению с  металлами. Поэтому для прогрева призабойных зон требуется очень большая мощность нагревателей. Вдоль напластования теплопроводность выше, чем поперёк напластования на 10-50%.

Коэффициенты  линейного и объёмного расширения изменяются в зависимости от плотности породы аналогично теплоёмкости. Наибольшим значением коэффициентов расширения обладает кварцевый песок и другие крупнозернистые породы.

Коэффициент линейного  расширения пород уменьшается с  ростом плотности минералов.

 

Тепловых  свойства некоторых горных пород и пластовых флюидов

Таблица 2.1.

Горная порода

с, кДж/(кг×К)

l, Вт/(м×К)

a×103, м2

aL×105, 1/К

глина

0,755

0,99

0,97

глинистые сланцы

0,772

154-218

0,97

0,9

доломит

0,93

1,1-4,98

0,86

известняк

1,1

2,18

0,91

0,5-0,89

кварц

0,692

2,49

1,36

1,36

песок

0,8

0,347

0,2

0,5

Пластовые флюиды

с, кДж/(кг×К)

l, Вт/(м×К)

a×103, м2

aL×105, 1/К

нефть

2,1

0,139

0,069-0,086

вода

4,15

0,582

0,14


3. СОСТАВ И  ФИЗИЧЕСКИЕ СВОЙСТВА ГАЗА, НЕФТИ  И ПЛАСТОВЫХ ВОД

 

3.1. СОСТАВ  И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА  ПРИРОДНЫХ ГАЗОВ

 

Природные газы – это вещества, которые при  нормальных условиях находятся в  газообразном состоянии.

Углеводородные  газы, в зависимости от их состава, давления и температуры могут находиться в залежи в различных состояниях – газообразном, жидком или в виде газожидкостных смесей. Газ обычно расположен в газовой шапке в повышенной части пласта.

Если газовая  шапка в нефтяной залежи отсутствует (это возможно при высоком пластовом давлении или особом строении залежи), то весь газ залежи растворён в нефти. Этот газ будет, по мере снижения давления, выделятся из нефти при разработке месторождения и будет называться попутным газом.

В пластовых  условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше растворённого газа в нефти.

Давление, при  котором весь имеющийся в залежи газ растворён в нефти, называется давлением насыщения. Оно определяется составом нефти и газа и температурой в пласте.

От давления насыщения зависит газовый фактор – количество газа (в м3), содержащееся в 1 тонне нефти.

Газы могут  находиться в пласте в трёх состояниях: свободном, сорбированном, растворённом.

 

3.1.1. Состав  природных газов

 

Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородов (СН4 – С4Н10, для Н.У. и С.У.), а также неуглеводородных компонентов (H2S, N2, CO, CO2, Ar, H2, He).

При нормальных и стандартных условиях в газообразном состоянии существуют только углеводороды С1–С4. Углеводороды С5 и выше в нормальных условиях находятся в жидком состоянии.

Газы, добываемые из чисто газовых месторождений, содержат более 95% метана (табл. 3.1).

 

Химический  состав газа газовых месторождений, об. %

Таблица 3.1

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Северо-Ставропольское

98,9

0,29

0,16

0,05

0,4

0,2

0,56

Уренгойское

98,84

0,1

0,03

0,02

0,01

1,7

0,3

0,56

Шатлыкское

95,58

1,99

0,35

0,1

0,05

0,78

1,15

0,58

Медвежье

98,78

0,1

0,02

1,0

0,1

0,56


 

Содержание метана на газоконденсатных месторождениях – 75-95% (табл. 3.2).

 

 

Химический  состав газа газоконденсатных месторождений, об. %

Таблица 3.2

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Вуктыльское

74,80

7,70

3,90

1,80

6,40

4,30

0,10

0,882

Оренбургское

84,00

5,00

1,60

0,70

1,80

3,5

0,5

0,680

Ямбургское

89,67

4,39

1,64

0,74

2,36

0,26

0,94

0,713

Уренгойское

88,28

5,29

2,42

1,00

2,52

0,48

0,01

0,707


 

Газы, добываемые вместе с нефтью (попутный газ) представляют собой смесь метана, этана, пропан-бутановой  фракции (сжиженного газа) и газового бензина. Содержание метана – около 35-85%. Содержание тяжёлых углеводородов в попутном газе 20-40% , реже – до 60% (табл. 3.3).

 

Химический  состав газа нефтяных месторождений (попутного  газа), об. %

Таблица 3.3

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Бавлинское

35,0

20,7

19,9

9,8

5,8

8,4

0,4

1,181

Ромашкинское

3838

19,1

17,8

8,0

6,8

8,0

1,5

1,125

Самотлорское

53,4

7,2

15,1

8,3

6,3

9,6

0,1

1,010

Узеньское

50,2

20,2

16,8

7,7

3,0

2,3

1,010

Информация о работе Физика пласта