Автор работы: Пользователь скрыл имя, 18 Октября 2012 в 15:59, реферат
Фундаментальные взаимодействия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.
На сегодня достоверно известно существование четырех фундаментальных взаимодействий:
гравитационного
электромагнитного
сильного
слабого
Фундаментальные взаимодействия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.
На сегодня достоверно
известно существование четырех
фундаментальных
При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.
Ведутся поиски других типов взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока существование какого-либо другого типа взаимодействия не обнаружено.
В физике механическая энергия
делится на два вида — потенциальную и кин
К началу XX века выяснилось, что все известные к тому моменту силы сводятся к двум фундаментальным взаимодействиям: электромагнитному и гравитационному.
В 1930-е годы физики обнаружили, что ядра атомов состоят из нуклонов (протонов и нейтро
Первой из теорий взаимодействий
стала теория электромагнетизма
В течение первой половины
XX века ряд физиков предприняли
многочисленные попытки создания такой
теории, однако ни одной полностью
удовлетворительной модели выдвинуто
не было. Это, в частности, связано с тем, что общая теория относительности
и теория электромагнетизма различны
по своей сути. Тяготение описывается
искривлением пространства-
Во второй половине XX столетия задача построения единой теории осложнилась необходимостью внесения в неё слабого и сильного взаимодействий, а также квантования теории.
В 1967 году Саламом и Вайнбергом была создана теория электрослабого взаимодействия, объединившая электромагнетизм и слабые взаимодействия. Позднее в 1973 году была предложена теория сильного взаимодействия (квантовая хромодинамика). На их основе была построена Стандартная Модель элементарных частиц, описывающая электромагнитное, слабые и сильное взаимодействия.
Экспериментальная проверка Стандартной Модели заключается в обнаружении предсказанных ею частиц и их свойств. В настоящий момент открыты все элементарные частицы Стандартной Модели, за исключением хиггсовского бозона.
Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности иСтандартной Моделью. Их объединения пока достичь не удалось из-за трудностей создания квантовой теории гравитации. Для дальнейшего объединения фундаментальных взаимодействий используются различные подходы: теории струн, петлевая квантовая гравитация, а также М-теория.
Цепна́я я́дерная реа́кция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.
Превращение вещества сопровождается
выделением свободной энергии лишь
в том случае, если вещество обладает
запасом энергий. Последнее означает,
что микрочастицы вещества находятся
в состоянии с энергией покоя большей, чем в другом возможном, переход
в которое существует. Самопроизвольному
переходу всегда препятствует энергетический барьер, для преодоления
которого микрочастица должна получить
извне какое-то количество энергии — энергии
возбуждения. Экзоэнергетическа
Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, т. е. химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций — это минимум 107 К из-за очень большой высотыкулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых легких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).
Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счет неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.
Цепные реакции широко
распространены среди химических реакций,
где роль частиц с неиспользованными
связями выполняют свободные ат
Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся. Правда, с процессом ветвления конкурируют процессы, приводящие к обрывам цепей, и складывающаяся ситуация порождает специфические для разветвленных цепных реакций предельные или критические явления. Если число обрывов цепей больше, чем число появляющихся новых цепей, то цепная самоподдерживающаяся реакция оказывается невозможной. Даже если её возбудить искусственно, введя в среду какое-то количество необходимых частиц, то, поскольку число цепей в этом случае может только убывать, начавшийся процесс быстро затухает. Если же число образующихся новых цепей превосходит число обрывов, цепная реакция быстро распространяется по всему объему вещества при появлении хотя бы одной начальной частицы.
Область состояний вещества с развитием цепной самоподдерживающейся реакции отделена от области, где цепная реакция вообще невозможна,критическим состоянием. Критическое состояние характеризуется равенством между числом новых цепей и числом обрывов.
Достижение критического состояния определяется рядом факторов. Деление тяжелого ядра возбуждается одним нейтроном, а в результате акта деления появляется более одного нейтрона (например, для 235U число нейтронов, родившихся в одном акте деления, в среднем равно 2,5). Следовательно, процесс деления может породить разветвленную цепную реакцию, носителями которой будут служить нейтроны. Если скорость потерь нейтронов (захватов без деления, вылетов из реакционного объёма и т.д.) компенсирует скорость размножения нейтронов таким образом, что эффективный коэффициент размножения нейтронов в точности равен единице, то цепная реакция идёт в стационарном режиме. Введение отрицательных обратных связей между эффективным коэффициентом размножения и скоростью энерговыделения позволяет осуществить управляемую цепную реакцию, которая используется, например, в ядерной энергетике. Если коэффициент размножения больше единицы, цепная реакция развивается экспоненциально; неуправляемая цепная реакция деления используется вядерном оружии.
Третий вариант
2. Во́зраст
Вселе́нной — время, прошедшее с момента,
когда появилась Вселенная (время,
Современная наука
Считается, что наша Вселенная появилась около 13,75±0,11 млрд лет назад. Это современная оценка, принятая на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической ΛCDM-модели.
Так как уже в специальной теории относительности время зависит от движения наблюдателя, а в общей теории относительности — ещё и от положения, то нужно уточнить, что понимается в таком случае под возрастом Вселенной. В современном представлении возраст Вселенной — это максимальное время, которое измерили бы часы с момента Большого взрыва до настоящего времени, попади они сейчас нам в руки.
Возраст Вселенной можно определить, по крайней мере, тремя способами:
Возраст элементов — возраст химических элементов можно оценить, используя явление радиоактивного распада с тем, чтобы определить возраст определённой смеси изотопов.
Возраст скоплений — возраст самых старых шаровых скоплений звёзд можно оценить, используя кривую в координатах светимость-температура для звёзд крупных шаровых скоплений. Этим методом было показано, что возраст Вселенной больше, чем 12,07 млрд лет, с 95%-й доверительной вероятностью.
Возраст звёзд — возраст старейших звёзд белых карликов можно оценить, используя измерения яркости белых карликов. Более старые белые карлики будут более холодными и потому менее яркими. Обнаруживая слабые белые карлики, можно оценить продолжительность времени, в течение которого данный белый карлик охлаждался. Oswalt, Smith, Wood и Hintzen (1996, Nature, 382, 692) проделали это и получили возраст млрд лет для звёзд основного диска Млечного пути. Они оценили возраст Вселенной по крайней мере на 2 млрд лет старше возраста диска, то есть больше 11,5 млрд лет.
Кроме того, существуют способы оценки возраста Вселенной, исходя из космологических моделей на основе определения Постоянной Хаббла.
Основные этапы развития Вселенной
Большое значение
для определения возраста Вселенной
имеет периодизация основных протекавших
во Вселенной процессов. В настоящее
время принята следующая
Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, это Планковское время (10−43 с после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий. По современным представлениям эта эпоха квантовой космологии продолжалась до времени порядка (10−11 с после Большого взрыва).
Следующая
эпоха характеризуется
Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, Галактики, Солнечная система, планеты, появилась жизнь на Земле.