Автор работы: Пользователь скрыл имя, 16 Мая 2014 в 20:28, курсовая работа
Для определения актуальности данной темы нужно определить, что такое и в чем заключаются цели эмпирического исследования.
Эмпирическое исследование – научное фактологическое исследование.
Любое научное исследование начинается со сбора, систематизации и обобщения фактов. Понятие "факт" имеет следующие основные значения:
1) Некоторый фрагмент действительности, объективные события, результаты, относящиеся либо к объективной реальности ("факты действительности"), либо к сфере сознания и познания ("факты сознания").
2) Знание о каком-либо событии, явлении, достоверность которого доказана, т.е. синоним истины.
3) Предложение, фиксирующее эмпирическое знание, т.е. полученное в ходе наблюдений и экспериментов.
Введение………………………………………………………………………...3
Глава 1. Понятие, сущность и цели модели CAPM
1.1 Понятие и сущность модели CAPM………………………………………5
1.2 Процесс расчета модели CAPM…………………………………………..6
Глава 2. Возможность применения вариантов модели CAPM
2.1 Двухфакторная модель CAPM в версии Блэка…………………………..10
2.2 Сущность модели D-CAPM………………………………………………..13
Глава 3. Эмпирические исследования возможности применения модели CAPM на развивающихся рынках
3.1 Критика САРМ и альтернативные меры риска………………………….16
3.2 Обзор эмпирических исследований концепции «риск-доходность» на развивающихся рынках………………………………………………………..18
Заключение…………………………………………………………………….24
Список использованной литературы……………………………………….26
Глава 3. Эмпирические исследования возможности применения модели CAPM на развивающихся рынках
3.1 Критика САРМ и альтернативные меры риска
Ряд эмпирических исследований 70-х годов ХХ века доказывали преимущества САРМ в предсказании доходности акций. К числу классических работ можно отнести: [Black, Jensen, Scholes, 1972], [Fama & MacBeth, 1973], [Solnik, 1974]. Однако, критика САРМ в академических кругах началась практически сразу после публикации работ, посвященных модели. Например, работы Ричарда Ролла [Roll, 1977] акцентируют на проблемы, связанные с определением рыночного портфеля.
На практике рыночный портфель заменяется неким максимально диверсифицированным портфелем, который не только доступен инвестору на рынке, но и поддается анализу (например, фондовый индекс). Проблема работы с таким прокси-портфелем заключается в том, что выбор его может существенно повлиять на результаты расчетов (например, на значение бета).
В работах Р. Леви [Levy, 1971], М. Блюма [Blume, 1975] и Шоулза-Виллимса [Scholes, Williams, 1977] акцентируется внимание на проблеме устойчивости ключевого параметра САРМ - коэффициенте бета, который традиционно оценивается с помощью линейной регрессии на основе ретроспективных данных с использованием метода наименьших квадратов (Ordinary Least Squares, OLS).
Это, по сути, вопрос о стационарности экономики и возможности построения оценок риска по прошлым данным. По результатам расчетов и анализа динамики коэффициента бета ряда отдельных акций и портфелей ценных бумаг Р. Леви пришел к выводу о том, что для любой акции ее бета- коэффициент не является устойчивым во времени и поэтому не может служить точной оценкой будущего риска. С другой стороны, бета портфеля, состоящего даже из 10 случайно выбранных акций, достаточно устойчив, и, следовательно, может рассматриваться в качестве приемлемой меры риска портфеля. Исследования М. Блюма показали, что с течением времени коэффициент бета портфеля приближается к единице, а внутренний риск компании приближается к среднеотраслевому или среднерыночному.
Альтернативным модельным решением проблемы устойчивости параметров САРМ являются оценки, получаемые на рынке срочных контрактов, когда за основу принимаются ожидания по ценам на финансовые активы. Такой подход реализует МСРМ (Market-Derived Capital Pricing Model).
В работе Бэнза [Banz, 1981] и Ролла [Roll, 1981] поднимается проблема корректности применения САРМ для малых компаний, т.е. акцентируется внимание на проблему размера (size effect, small firm effect).
Еще одна область критики – временные отрезки для расчета параметров САРМ (так называемая проблема горизонта инвестирования). Так как в большинстве случаев САРМ используется для анализа инвестиций с горизонтом больше одного года, то расчеты на основе годовых оценок становятся зависимы от состояния рынка капитала. Если рынок капитала эффективен (будущая доходность не предопределяется прошлой динамикой, цены акций характеризуются случайным блужданием), то горизонт инвестирования не значим и расчеты на базе годовых показателей оправданны. Если же рынок капитала нельзя признать эффективным, то время инвестирования не учитывать нельзя.
Проблематичен и тезис САРМ о значимости только систематических факторов риска. Эмпирически доказано, что несистематические переменные, такие как рыночная капитализация или соотношение цена/прибыль, оказывают влияние на требуемую доходность.
Исследования 80-90-х годов ХХ века показали, что бета-коэффициент САРМ не в состоянии объяснить отраслевые различия в доходности, в то время как размер и другие характеристики компании в состоянии это сделать.
Другая область, подверженная критики, касается поведения инвесторов, которые часто ориентируются не на спекулятивный, а на чистый риск. Как показывает практика, инвесторы готовы инвестировать в активы, характеризующиеся положительной волатильностью (т.е. превышением доходности над среднем уровнем). И напротив, инвесторы негативно воспринимают активы с отрицательной волатильностью. Двусторонняя же дисперсия является функцией отклонения от среднего как в сторону повышения курса акции, так и в сторону понижения. Поэтому, основываясь на расчете двусторонней дисперсии, акция, характеризующаяся изменчивостью в направлении повышения цены, рассматривается как рисковый актив в той же степени, что и акция, цена которой колеблется в направлении снижения.
Эмпирические исследования, например, [Miller & Leiblein, 1996] доказывают, что поведение инвесторов мотивируется несклонностью к одностороннему отрицательному риску в противоположность общему риску (или двусторонней дисперсии).
Дисперсия ожидаемой доходности является достаточно спорной мерой риска как минимум по двум причинам:
Еще одна критическая область связана с предпосылками о вероятностном распределении цен и доходностей ценных бумаг. Как показывает практика, одновременное выполнение требований о симметричности и нормальности распределения ожидаемой доходности акций не достигается. Решение проблемы - использование не классической (двусторонней) дисперсии, а односторонней (semivariance frameworks). Такое решение обосновывается следующими доводами:
1) использование односторонней
дисперсии обоснованно при
2) односторонняя дисперсия содержит информацию, предоставляемую двумя характеристиками функции распределения: дисперсией и коэффициентом скошенности, что дает возможность использовать однофакторную модель для оценки ожидаемой доходности актива (портфеля).
Проблема асимметрии доходности в работе [Bawa, Lindenberg, 1977] решается через метод lower partial moment (LPM), что позволяет построить равновесную модель ценообразования финансовых активов, известную как LPM – CAPM.
В работе 1974 года Хоганом и Вореном [Hogan & Warren, 1974] было аналитически показано, что замена традиционного отклонения доходности портфеля на одностороннее для оценки риска и переход к конструкции «средняя доходность – одностороннее отклонение» (mean-semivariance frameworks) не меняет фундаментальную структуру САРМ.
3.2 Обзор эмпирических
исследований концепции «риск-
Специфические проблемы применения САРМ возникают на развивающихся рынках капитала, для которых достаточно сложно обосновать параметры модели (безрисковую доходность, премию за рыночный риск, бета-коэффициент) по данным локального рынка капитала ввиду отсутствия информационной эффективности и низкой ликвидности обращаемых активов.
В ряде эмпирических исследований доказывается некорректность использования САРМ именно на развивающихся рынках по сравнению с развитыми (например, [Estrada, 2000], [Barry, Goldfrey, Lockwood & Rodrigues, 2002], [Serra, 2003]). Отмечаемая особенность развивающихся рынков – значимость специфических рисков, связанных с государственной политикой регулирования экономики, с институциональной защитой инвесторов и с корпоративным управлением. Ввиду наличия корреляции между развивающимися рынками и глобальным рынком капитала эти риски не устраняются диверсификацией капитала глобального инвестора.
Еще одна проблема развивающихся рынков – отсутствие стационарности и динамичные изменения, связанные с либерализацией локальных рынков капитала.
Бекерт и Харвей [Bekaert & Harvey, 1995] доказывают, что при оценке требуемой доходности развитые и развивающиеся рынки надо рассматривать с разных позиций, так как следует учитывать степень интеграции локального рынка в мировой финансовый рынок. Степень интеграции является не постоянной величиной, меняется с течением времени. Это накладывает отпечаток на формирование ставок доходности.
В работе 1995 года Бекерт утверждает, что наличие барьеров при движении капитала и осуществлении международных инвестиций автоматически означает, что факторы риска на развивающихся рынках отличны от факторов риска развитых стран.
В работе [De Swaan & Liubych, 1999] доказывается, что уровень интеграции в мировой рынок капитала (или наличие барьеров на движение капитала) должен определять выбор модели обоснования затрат на собственный капитал.
Альтернативная точка зрения доказывается в работе Роувенхорста [Rouwenhorst, 1999]. Автор пришел к выводу, что с точки зрения факторов влияния разницы между развитыми и развивающимися рынками нет. Факторы, объясняющие доходность собственного капитала, которые оказались значимыми на развитых рынках, существенны и на развивающихся. К числу таких факторов относятся:
Активные исследования по тестированию модификаций САРМ с учетом неразвитости рынков капитала проведены в странах Южной Америки (Аргентина, Бразилия, Венесуэла). Выбор модификации рекомендуется увязывать со степенью развития локального финансового рынка и его интегрированностью в глобальный рынок капитала.
Схема 1. Модификации САРМ в зависимости от степени интеграции и сегментации рынка.
Модель Godfrey- Espinosa [Godfrey. & Espinosa, 1996] ориентируется на расчет бета - коэффициента и рыночной премии за риск по данным локального рынка с введением страновой премии за риск (CRP) в корректировку глобальной ставки безрисковой доходности, а также с целью избежания двойного учета риска вводит в премию за риск инвестирования поправочный множитель (1-R2), где R2 - коэффициент детерминации регрессионного уравнения, связывающего доходность компании на локальном рынке с изменчивостью премии за страновой риск.
В работе Гонзалеса [Gonzalez, 2001] тестируется модель САРМ на выборке компаний, акции которых торгуются на фондовой бирже Каракаса (Венесуэла). Используя регрессионный метод на данных за 6-летний период (1992-1998гг.), автор приходит к выводу о том, что на рынке Венесуэлы модель САРМ не работает.
Это заключение, главным образом, было сделано вследствие отвержения гипотезы о наличии положительной зависимости между риском и доходностью акций. Однако результаты исследования Gonzalez F. показали, что, во-первых, зависимость между риском (в качестве показателя которого использовался коэффициент бета) и доходностью является линейной, и, во-вторых, систематический риск - это не единственный фактор, оказывающий влияние на ожидаемую доходность на собственный капитал.
Схожие результаты были получены в ходе исследования М. Омрана [Omran, 2007] на египетском рынке капитала. В выборку вошли 41 компания с наиболее ликвидными акциями. Панель данных была сформирована за период декабрь 2001- декабрь 2002гг. на основе логарифмических доходностей акций, полученных на недельных наблюдениях.
Эмпирические тесты Omran M. свидетельствуют о том, что рыночный риск является существенным фактором, объясняющим ожидаемую доходность акций египетских компаний. Выявленный парадокс исследования -доходность портфеля, составленного из акций компаний с низкими коэффициентами бета (в основном, это компании, которые производят товары народного потребления и предоставляющие финансовые услуги) выше, чем доходность портфеля из акций компаний строительной, текстильной отрасли и сектора гостиничного бизнеса с более высокими значениями коэффициента бета. По мнению автора, причиной такого несоответствия является государственная национализация 1950-1960-х гг., которая в большей степени отрицательно повлияла на риски промышленного и строительного секторов экономики, чем на компании, производящие потребительские товары, а также на финансовые организации.
Интересны исследования на развивающихся рынках, посвященные выбору меры инвестиционного риска. Как правило, в таких работах тестирование проводится в рамках нескольких моделей: САРМ и ее альтернативных вариантов. Например, Хванг и Педерсен [Hwang & Pedersen, 2002] тестируют три модели: классическую САРМ и две модели, в которых используются асимметричные меры риска - LPM-CAPM (Lower Partial Moment CAPM) и ARM (Asymmetric Response Model).
Особенность альтернативных моделей заключается в том, что они, по мнению авторов, подходят для случаев ненормального распределения доходностей и неликвидного локального рынка капитала. Исследование проводилось на выборке из 690 компаний растущих рынков на 10-летнем временном периоде (апрель 1992- март 2002гг.). По результатам проведенной работы, Hwang S. И Pedersen C. сделали вывод о том, что по своей объясняющей способности САРМ не уступает альтернативным моделям. На перекрестной выборке объясняющая способность САРМ достигла 80% на панели данных недельной и месячной доходности, и 55% - на данных дневной доходности. Значимых преимуществ асимметричных мер риска не было выявлено. Кроме того, проводя анализ, авторы разделили выборку 26 развивающихся стран по регионам, а затем разбили весь временной период наблюдений на два промежутка- до и после азиатского кризиса 1997г.
Благодаря этому, Hwang S. и Pedersen C. выявили значимое влияние локальных рисков на развивающихся рынках капитала, что согласуется с результатами работ, приведенных выше.
В исследовании Дейрила Коллинза [Collins, 2002] тестируются различные меры риска для 42 стран развивающегося рынка: систематического (коэффициент бета), общего (стандартное отклонение), идиосинкратического, одностороннего (одностороннее отклонение, односторонний коэффициент бета и VaR8), а также размер рынка (определяется по средней капитализации страны), показатели скошенности и эксцесса.
Тестирование проводилось с помощью эконометрического подхода (так же как и в большинстве подобных работ) с позиции международного инвестора на 5-летнем временном промежутке (январь 1996- июнь 2001гг) по недельным доходностям. В зависимости от размера рынка капитала, ликвидности и степени развития первоначальная выборка из 42 стран была разделена на три группы: первый уровень- страны с большим размером рынка капитала (например, Бразилия, ЮАР, Китай), а также с небольшим размером рынка, но экономически и информационно развитым; второй уровень - менее крупные развивающиеся рынки (Россия), третий уровень – небольшие рынки (такие как Латвия, Эстония, Кения, Литва, Словакия и др.).
Согласно полученным результатам исследования, для некоторых рынков значения коэффициентов бета получились меньше ожидаемых, что дает ложный сигнал о существовании низкого риска для инвесторов. Вывод работы - коэффициент бета (а следовательно, и модель САРМ) некорректно применять для всей совокупности развивающихся стран. Д. Коллинз утверждает, что нет единого показателя риска, который подходил бы для любой страны из группы развивающихся.