Автор работы: Пользователь скрыл имя, 24 Октября 2013 в 17:51, реферат
Бактериальное выщелачивание металлов - способность ряда ацидофильных микроорганизмов, окисляющих железо и серу, переводить сульфиды и элементарную серу в водорастворимые сульфаты металлов. Используется для добычи меди, цинка, никеля, урана и др. металлов из природных руд. Выщелачивание осуществляют аэробные бактерии Thiobacillus (Acidithiobacillus) thiooxidans и Thiobacillus ferrooxidans, а также археи рода Sulfolobus.
1. Бактериальное выщелачивание
2. Выщелачивание медных руд
3. Переработка никелесодержащих руд
4. Перспективы извлечений золота методом кучного выщелачивания
Заключение
Список использованной литературы
Содержание
Заключение
Список использованной литературы
1. Бактериальное выщелачивание
Бактериальное выщелачивание металлов - способность ряда ацидофильных микроорганизмов, окисляющих железо и серу, переводить сульфиды и элементарную серу в водорастворимые сульфаты металлов. Используется для добычи меди, цинка, никеля, урана и др. металлов из природных руд. Выщелачивание осуществляют аэробные бактерии Thiobacillus (Acidithiobacillus) thiooxidans и Thiobacillus ferrooxidans, а также археи рода Sulfolobus.
Thiobacillus ferrooxidans (Th. ferrooxidans), способные окислять сульфидные минералы и закисное железо до окисного (так называемые железобактерии), и Thiobacillus thiooxidans (так называемые серобактерии). Тионовые бактерии являются хемоавтотрофами, т. е. единственный источник энергии для их жизнедеятельности — процессы окисления закисного железа, сульфидов различных металлов и элементарной серы. Эта энергия расходуется на усвоение углекислоты, выделяемой из атмосферы или из руды. Получаемый углерод идёт на построение клеточной ткани бактерий. Thiobacillus thiooxidans окисляют сульфидные минералы до сульфатов прямым и косвенным путём (когда микроорганизмы окисляют сернокислое закисное железо до окисного, являющегося сильным окислителем и растворителем сульфидов):
Оптимальная температура для развития тионовых бактерий 25—35°C, а pH от 2 до 4. Тионовые бактерии ускоряют растворение халькопирита в 12 раз, арсенонирита и сфалерита в 7 раз, ковелина и борнита в 18 раз по сравнению с обычными химическими методами.
Литоторфные микроорганизмы – организмы, использующие неорганические вещества в качестве окисляемых субстратов (доноров электронов). Различают фото – и хемолитотрофы. Фотолитотрофы используют молекулярный водород, соединения серы (пурпурные и зеленые бактерии, некоторые цианобактерии), воду (цианобактерии, водоросли) в качестве донора водорода, но энергию получают в результате поглощения света. Хемолитотрофы окисляют неорганический субстрат с целью получения энергии. При этом они могут использовать молекулярный водород (водородные бактерии), оксид углерода (карбоксидобактерии), восстановленные соединения серы (тионовые бактерии), соединения азота (нитрифицирующие бактерии). В качестве акцептора электронов они используют молекулярный кислород. В анаэробных условиях терминальным акцептором водорода может быть нитрат, нитрит и оксиды азота (денитрифицирующие бактерии), сера и (или) сульфат (сульфатредуцирующие бактерии), углекислота (метаногены, ацетогены) и некоторые др. соединения. Л. играют существенную роль в природе, являясь продуцентами органического вещества, участвуя в замыкании циклов биогенных элементов. Большое значение Л. имеют в геологических процессах, обусловливая выщелачивание металлов из горных пород, участвуя в формировании осадочных пород.
Способность Thiobacillus. thiooxidans окислять сульфиды нашла практическое применение для бактериального выщелачивания бедных руд. В настоящее время этот процесс используется в основном для обогащения медных руд с настолько низким содержанием меди, что их неэкономично обрабатывать обычным способом. Роль бактерий в этом процессе была выяснена недавно. В 1958 г. одной американской фирмой был запатентован способ бактериальной регенерации сернокислого окисного железа, выщелачивания меди и цинка из бедных руд, а также метод биологического обогащения молибденовых, желозохромовых и железотитановых концентратов -путем освобождения их от железа.
В настоящее время во многих странах микроорганизмы применяются для промышленного получения меди, урана и других металлов.
Бактериальное выщелачивание руд делится на кучное и чановое. Проводится кучное выщелачивание отвалов, которые складывают на подготовленной цементированной площадке. Крупные куски руды чередуют с мелкими, предусматривают вентиляционные ходы. Отвалы периодически орошают кислыми бактериальными растворами. Медь в результате окисления переходит в воду в виде медного купороса, затем ее выделяют из водного раствора. Чаповое выщелачивание экономично проводить для более дорогого сырья, например для обогащения концентратов. При этом способе выщелачивания часто образуются высокие концентрации металлов, поэтому целесообразно применять культуры бактерий, предварительно приученные к высоким концентрациям меди, мышьяка и других элементов. Так, при чановом выщелачивании успешно протекает процесс освобождения оловянных и золотых концентратов от мышьяка. В этих концентратах мышьяк присутствует в основном в виде арсенопирита — сульфида, легко окисляемого Th. ferrooxidans. Процесс очистки концентратов, содержащих 4—6% мышьяка, протекает около 120 ч.
В настоящее время получает
широкое распространение
Сульфидам часто сопутствуют
редкие элементы. По геохимическим
данным, количество таких элементов,
как кадмий, галлий, индий, таллий, уменьшается
в продуктах окисления
Таким образом, в миграции редких элементов и в обеднении ими зоны окисления сульфидных месторождений бактерии играют большую роль.
В такие сульфиды, как пирит, арсенопирит, антимонит, бывают включены мельчайшие частицы золота, которые при химическом и бактериальном окислении сульфидов должны освобождаться. Так, при окислении гравитационного концентрата под действием бактерий в раствор переходило около 0,5 мг/л золота.
Таким образом, бактерии способны воздействовать даже на такой инертный металл, как золото. Кроме Th. ferrooxidans и других тионовых бактерий, которые оказывают косвенное воздействие, существуют микроорганизмы, способные создавать вещества, вступающие в водно-растворимый комплекс с золотом. И. Паре были выделены гетеротрофные бактерии, которые образовывали на органических средах, содержащих пептон и соли органических кислот, вещества неизвестной природы, растворяющие золото. Под действием бактерий, определенных как Вас. firmus и Вас. sphaericus, в раствор переходило до 10 мг/л золота. Возможно, что расшифровка химической природы водно-растворимого комплекса золота даст промышленности новый растворитель.
2. Выщелачивание медных руд
Важнейший фактор бактериального выщелачивания — быстрая регенерация сернокислого окисного железа тионовыми бактериями (Th. ferrooxidans), что в некоторых случаях ускоряет процессы окисления и выщелачивания. В значительных промышленных масштабах бактериальное выщелачивание применяется для кучного извлечения полезных ископаемых (меди и урана) из руд на месте их залегания. Например, экономически целесообразно извлекать медь из забалансовых сульфидных руд. Это осуществляется водными растворами Fe2(SO4)3 в присутствии Al2(SO4)3, FeSO4 и тионовых бактерий Th. ferrooxidans. Раствор подаётся по шлангам в скважины, пробурённые в рудном теле (рис. 1); бактерии и сульфат окиси железа окисляют сульфиды меди по схеме:
Рисунок 1 Схема подземного бактериального выщелачивания медной руды: 1 — прудок для выращивания и регенерации бактерий; 2 — насосная для перекачки бактериального раствора к руде; 3 — трубопровод; 4 — задвижка; 5 — коллектор; 6 — полиэтиленовый шланг; 7 — скважина
По горным выработкам раствор из рудного тела подают на цементационную или др. установку для извлечения меди. В различных странах ведутся исследования по выщелачиванию с участием тионовых бактерий для извлечения металлов (Zn, Со, As, Мп и др.). Ведутся работы по выявлению бактерий иных видов для извлечения др. полезных ископаемых. Например, для растворения и извлечения золота предложено использовать гетеротрофные бактерии Aeromonas, выделенные из рудничных вод золотоносных приисков.
Простота аппаратуры для бактериального выщелачивания, даёт возможность быстрого размножения бактерий, особенно при возвращении в процесс отработанных растворов, содержащих живые организмы, открывает возможность не только резко снизить себестоимость получения ценных полезных ископаемых, но и значительно увеличить сырьевые ресурсы за счёт использования бедных, забалансовых и потерянных руд в месторождениях, отвалов из отходов обогащения, пыли, шлаков и др. В перспективе это открывает возможности создания полностью автоматизированных предприятий по получению металлов из забалансовых и потерянных руд непосредственно из недр Земли, минуя сложные горнообогатительные комплексы.
Орошение руды (см. рис 2) в отвале или в рудном теле осуществляется водными растворами H2SO4, содержащими Fe3+ и бактерии. Раствор подаётся через скважины при подземном или путём разбрызгивания на поверхности при кучном выщелачивании. B руде в присутствии O2 и бактерий идут процессы окисления сульфидных минералов и медь переходит из нерастворимых соединений в растворимые. Раствор, содержащий медь, поступает на цементационную или др. установки (сорбция, экстракция) для извлечения меди, затем на отвал или рудное тело (схема замкнутая). Интенсификация выщелачивания достигается активизацией жизнедеятельности тионовых и др. сульфидокисляющих бактерий, присутствующих в самой руде и адаптированных к конкретным условиям среды (тип руды, химический состав растворов, температура и т.д.). Для этого необходимы pH 1,5-2,5, высокий окислительно - восстановительный потенциал (Eh 600-750 мB), благоприятный и стабильный хим. состав растворов, что достигается путём их регенерации и режима аэрирования и увлажнения (орошения) руды. B отдельных случаях следует добавлять соли азота и фосфора, a также бактерии, выращенные на оборотных растворах в прудах-регенераторах. Число клеток бактерий в выщелачивающем растворе и руде должно быть не ниже 106- 107соответственно в 1 мл или 1 г. Себестоимость 1 т меди, полученной этим способом, в 1,5-2 раза ниже, чем при обычных гидрометаллургических или пирометаллургических способах.
Б. в. упорных сульфидных концентратов проводится прямоточно в серии последовательно соединённых чанов c перемешиванием и аэрацией аэрлифтом при t 30°C, pH 2,0-2,5 и концентрации клеток Th. ferrooxidans 1010 - 1011 в 1 мл пульпы. Cхема переработки сульфидных концентратов замкнутая. Oборотные растворы после частичной или полной регенерации используются в качестве питательной среды для бактерий и выщелачивающего раствора. Наиболее активными являются культуры бактерий, адаптированные к комплексу факторов (pH, тяжёлые металлы, тип концентрата и т.д.) в условиях активного процесса Б. в. Примеры Б. в. в чанах: из коллективных медно-цинковых концентратов за 72-96 ч извлекаются в раствор до 90-92% Zn и Cd при извлечении Cu и Fe соответственно около 25% и 5%; из свинцовых концентратов можно полностью извлечь Cu, Zn и Cd. B растворах достигаются концентрации металлов: Cu до 50 г/л, Zn до 100 г/л и т.д. B олово- и золотосодержащих мышьяковистых концентратах арсенопирит практически полностью разрушается за 120 ч, что позволяет в одних случаях очистить концентраты от вредной примеси мышьяка, в других - при последующем цианировании извлечь до 90% золота.
3. Переработка никелесодержащих руд
Методом кучного бактериального выщелачивания. Опыт фирмы «Talvivaara». Финская компания «Talvivaara Mining Company Р1с.» (ТМСР) является владельцем никелевого рудника на месторождении полиметаллических руд с одноименным названием (Talvivaara), расположенного в субарктической зоне на северо-востоке Финляндии. Измеренные и исчисленные запасы месторождения определены величиной 642 млн т руды со средней массовой долей никеля 0,23%. Кроме никеля, руда содержит в качестве попутных ценных компонентов медь (0,13%), кобальт (0,02%) и цинк (0,51%). Главные сульфидные минералы в руде — пирротин, пирит, халькопирит, сфалерит и петландит, суммарная массовая доля которых составляет в среднем 21%. Данная сырьевая база является достаточной для поддержания объема производства предприятия на период более 60 лет, при годовой добыче никеля 33 тыс. т, цинка — 60 тыс. т, меди — 10 тыс. т и кобальта —1,2 тыс. т. Оба рудных тела пригодны для их отработки открытым способом (экскаваторные работы), благодаря низкому коэффициенту вскрыши (примерно 1:1).
До последнего
времени месторождение
Предусмотренная проектом технолого-аппаратурная схема (см. рис. 3) включает в себя 4 стадии: горные работы, дробление, кучное биовыщелачивание и извлечение металлов из растворов с получением соответствующей товарной продукции. В качестве метода добычи руды приняты открытые горные работы, планируемые в объеме примерно 15 млн. т в год. Дробление руды осуществляется в 3 стадии. Дробленую руду подвергают агломерации. Затем руду с помощью конвейера укладывают в кучи высотой 8 м на соответствующие «подушки» для проведения первичного биовыщелачивания металлов, рассчитанного на период до 1,5 лет. Кучи снабжены трубами для аэрации. Кучи орошают выщелачивающими растворами, рециркулирующими в обороте до тех пор, пока концентрация металлов в растворах не достигает необходимого уровня. После 1,5-годового биовыщелачивания руду убирают с первичных оснований с укладкой ее на новые основания, где руда выщелачивается повторно для доизвлечения металлов. В цикле извлечения металлов никель, медь, цинк и кобальт осаждают из растворов сероводородом.
Летом 2005 г. непосредственно на руднике была создана демонстрационная биовыщелачивающая установка на производительность 17 тыс. т руды. Орошение кучи начато в августе 2005 г. Пилотная куча была инокулирована местными бактериями, отобранными на месторождении. Температура раствора достигала более 50°С. Повышенные температуры сохранялись и в зимних условиях.
Зимой 2007 г. кучу подвергли рештабелированию и началась фаза вторичного биохимического окисления. Бактерии, используемые в процессе биовыщелачивания на Talvivaara, присутствуют и развиваются в исходной руде. Таким образом, они являются эндемическими (т.е. свойственными данной местности) и поэтому хорошо приспособлены к условиям окружающей среды, что существенно повышает эффективность рассматриваемой технологии.
Одновременно с процессом КБВ в 2005–2006 гг. проведены испытания по осаждению металлов из получаемых технологических растворов. Принятые на Talvivaara методы извлечения никеля и сопутствующих ему цветных металлов (кобальта, меди, цинка) разработаны предприятием в содружестве с фирмой OMG Kokkola Chemicals (Финляндия).
Начало производства металлсодержащих продуктов на пилотных установках OMG датируются мартом 2006 г. Полученные продукты характеризуются высоким качеством, при извлечении из растворов близким к 100%. Результаты технологических испытаний 2005–2006 гг. позволили получить весьма ценную информацию и исходные данные в проект «Talvivaara». На опытных установках достигнут 96–98% извлечения металлов из руд.