Биохимия соединительной ткани

Автор работы: Пользователь скрыл имя, 27 Апреля 2014 в 16:52, реферат

Краткое описание

Соединительная ткань составляет примерно 50% от массы тела. Рыхлая соединительная ткань подкожной клетчатки, компактная кость и зубы, сухожилия и межмышечные фасциальные прослойки, кожа и внутриорганная строма паренхиматозных органов, нейроглия и брюшина – все это соединительная ткань.

Содержание

1. Введение……………………………………………………………….3
2. Особенности состава и строения костной ткани……………………4
3. Основное вещество соединительной ткани, гликозамингликаны…7
4. Строение коллагена, эластина……………………………………….11
5. Неколлагеновые белки соединительной ткани……………………..14
6. Список литературы…………………………………………………...16

Вложенные файлы: 1 файл

реферат химия.docx

— 196.05 Кб (Скачать файл)

Министерство сельского хозяйства Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Чувашская государственная сельскохозяйственная академия»

 

 

 

 

Кафедра химии

 

 

 

 

Реферат на тему: Биохимия соединительной ткани

 

 

         

 

 

 

 

   

          Выполнила студентка 2 курса                 факультета ветеринарной медицины

                                                                       Егорова Е.А.

                                                                       Проверила: Кульмакова Н.И.

 

 

 

 

 

 

 

 

 

 

 

 

Чебоксары 2014

Содержание

  1. Введение……………………………………………………………….3
  2. Особенности состава и строения костной ткани……………………4
  3. Основное вещество соединительной ткани, гликозамингликаны…7
  4. Строение коллагена, эластина……………………………………….11
  5. Неколлагеновые белки соединительной ткани……………………..14
  6. Список литературы…………………………………………………...16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

Соединительная ткань составляет примерно 50% от массы тела. Рыхлая соединительная ткань подкожной клетчатки, компактная кость и зубы, сухожилия и межмышечные фасциальные прослойки, кожа и внутриорганная строма паренхиматозных органов, нейроглия и брюшина – все это соединительная ткань.

I - тучная  клетка; II - ретикулиновые волокна; III - эластическое волокно; IV - коллагеновые  волокна; V - фибробласт.

Разновидности соединительной ткани:

Соединительная ткань составляет до 50 % массы человеческого организма. Это связующее звено между всеми тканями организма.

Различают 3 вида соединительной ткани:

  • собственно соединительная ткань;
  • хрящевая соединительная ткань;
  • костная соединительная ткань.

Соединительная ткань может выполнять как самостоятельные функции, так и входить в качестве прослоек в другие ткани.

Функции соединительной ткани:

  • Структурная.
  • Обеспечение постоянства тканевой проницаемости.
  • Обеспечение водно-солевого равновесия.
  • Участие в иммунной защите организма.

 

 

 

 

 

 

 

 

 

 

 

Особенности состава и строения костной ткани

 

Костная ткань – особый вид соединительной ткани. Необходимо различать понятия «кость как орган» и «костная ткань».

Кость как орган – это сложное структурное образование, в которое наряду со специфической костной тканью входят надкостница, костный мозг, кровеносные и лимфатические сосуды, нервы и в ряде случаев хрящевая ткань.

Костная ткань является главной составной частью кости. Она образует костные пластинки. В зависимости от плотности и расположения пластинок различают компактное и губчатое костное вещество. В телах длинных (трубчатых) костей в основном содержится компактное костное вещество. В эпифизах длинных костей, а также в коротких и широких костях преобладает губчатое костное вещество.

Клеточными элементами костной ткани являются остеобласты, остеоциты и остеокласты.

 

Остеобласт – клетка костной ткани, участвующая в образовании межклеточного вещества. Отличительной чертой остеобластов является наличие сильно развитого эндоплазматического ретикулума и мощного аппарата белкового синтеза. В остеобластах синтезируется проколлаген, который затем перемещается из эндоплазматического ретикулума в комплекс Гольджи, включается в секретируемые гранулы (везикулы). В результате действия группы специальных пептидаз от проколлагена отщепляются сначала N-концевой, а затем С-концевой домены и формируется тропоколлаген. Последний в межклеточном пространстве образует фибриллы. В дальнейшем после образования поперечных сшивок формируется зрелый коллаген (см. гл. 21).

В остеобластах синтезируются также гликозаминогликаны, белковые компоненты протеогликанов, ферменты и другие соединения, многие из которых затем быстро переходят в межклеточное вещество.

 

Остеоцит (костная клетка) – зрелая отростчатая клетка костной ткани, вырабатывающая компоненты межклеточного вещества и обычно замурованная в нем.

Как известно, остеоциты образуются из остеобластов при формировании костной ткани.

 

Остеокласт – гигантская многоядерная клетка костной ткани, способная резорбировать обызвествленный хрящ и межклеточное вещество костной ткани в процессе развития и перестройки кости. Это основная функция остеокласта. Следует отметить, что остеокласты, так же как и остеобласты, синтезируют РНК, белки. Однако в остеокластах этот процесс протекает

менее интенсивно, так как у них слабо развит эндоплазматический ретикулум и имеется небольшое число рибосом, но содержится много лизосом и митохондрий.

 

 

 

Химический состав костной ткани.

Изучение химического состава костной ткани сопряжено со значительными трудностями, поскольку для выделения органического матрикса требуется провести деминерализацию кости. Кроме того, содержание и состав органического матрикса подвержены значительным изменениям в зависимости от степени минерализации костной ткани.

Известно, что при продолжительной обработке кости в разведенных растворах кислот ее минеральные компоненты растворяются и остается гибкий мягкий органический остаток (органический матрикс), сохраняющий форму интактной кости. Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества – 70% и вода – 10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33–40%. Количество воды сохраняется в тех же пределах, что и в компактной кости (Ю.С. Касавина, В.П. Торбенко).

По данным А. Уайта неорганические компоненты составляют около 1/4 объема кости; остальную часть занимает органический матрикс. Вследствие различий в относительной удельной массе органических и неорганических компонентов на долю нерастворимых минералов приходится половина массы кости.

Неорганический состав костной ткани. Более 100 лет назад было высказано предположение, что кристаллы костной ткани имеют структуру апатита. В дальнейшем это в значительной мере подтвердилось. Действительно, кристаллы кости относятся к гидроксилапатитам, имеют форму пластин или палочек и следующий химический состав – Са10(РО4)6(ОН)2. Кристаллы гидроксилапатита составляют лишь часть минеральной фазы костной ткани, другая часть представлена аморфным фосфатом кальция Са3(РО4)2. Содержание аморфного фосфата кальция подвержено значительным колебаниям в зависимости от возраста. Аморфный фосфат кальция преобладает в раннем возрасте, в зрелой кости преобладающим становится кристаллический гидроксилапатит. Обычно аморфный фосфат кальция рассматривают как лабильный резерв ионов Са2+ и фосфата.

В организме взрослого человека содержится более 1 кг кальция, который почти целиком находится в костях и зубах, образуя вместе с фосфатом нерастворимый гидроксилапатит. Большая часть кальция в костях постоянно обновляется. Ежедневно кости скелета теряют и вновь восстанавливают примерно 700–800 мг кальция.

В состав минеральной фазы кости входит значительное количество ионов, которые обычно не содержатся в чистом гидроксилапатите, например ионы натрия, магния, калия, хлора и др. Высказано предположение, что в кристаллической решетке гидроксилапатита ионы Са2+ могут замещаться другими двухвалентными катионами, тогда как анионы, отличные от фосфата и гидроксила, либо адсорбируются на поверхности кристаллов, либо растворяются в гидратной оболочке кристаллической решетки.

Органический матрикс костной ткани. Приблизительно 95% органического матрикса приходится на коллаген. Вместе с минеральными компонентами коллаген является главным фактором, определяющим механические свойства кости. Коллагеновые фибриллы костного матрикса образованы коллагеном типа 1. Известно, что данный тип коллагена входит также в состав сухожилий и кожи, однако коллаген костной ткани обладает некоторыми особенностями. Есть данные, что в коллагене костной ткани несколько больше оксипролина, чем в коллагене сухожилий и кожи. Для костного коллагена характерно большое содержание свободных ε-амино-групп лизиновых и оксилизиновых остатков. Еще одна особенность костного коллагена – повышенное по сравнению с коллагеном других тканей содержание фосфата. Большая часть этого фосфата связана с остатками серина.

 

В сухом деминерализованном костном матриксе содержится около 17% неколлагеновых белков, среди которых находятся и белковые компоненты протеогликанов. В целом количество протеогликанов в сформировавшейся плотной кости невелико.

В состав органического матрикса костной ткани входят гликозаминогликаны, основным представителем которых является хондроитин-4-суль-фат. Хондроитин-6-сульфат, кератансульфат и гиалуроновая кислота содержатся в небольших количествах.

Принято считать, что гликозаминогликаны имеют непосредственное отношение к оссификации . Показано, что окостенение сопровождается изменением гликозаминогликанов: сульфатированные соединения уступают место несульфатированным. Костный матрикс содержит липиды, которые представляют собой непосредственный компонент костной ткани, а не являются примесью в результате недостаточно полного удаления богатого липидами костного мозга. Липиды принимают участие в процессе минерализации. Есть основания полагать, что липиды могут играть существенную роль в образовании ядер кристаллизации при минерализации кости.

Биохимические и цитохимические исследования показали, что остеобласты – основные клетки костной ткани – богаты РНК . Высокое содержание РНК в костных клетках отражает их активность и постоянную биосинтетическую функцию

Своеобразной особенностью костного матрикса является высокая концентрация цитрата: около 90% его общего количества в организме приходится на долю костной ткани. Принято считать, что цитрат необходим для минерализации костной ткани. Вероятно, цитрат образует комплексные соединения с солями кальция и фосфора, обеспечивая возможность повышения концентрации их в ткани до такого уровня, при котором могут начаться кристаллизация и минерализация.

Кроме цитрата, в костной ткани обнаружены сукцинат, фумарат, малат, лактат и другие органические кислоты.

 

 

Основное вещество соединительной ткани, гликозамингликаны

 

Состав и строение соединительной ткани

В соединительной ткани различают:

межклеточное (основное) вещество,

клеточные элементы,

волокнистые структуры (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.

 

Межклеточное (основное) вещество.

 

Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель, который образован высокомолекулярными соединениями, составляющими до 30 % массы межклеточного вещества. Оставшиеся 70 % - это вода.

Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами - глюкозоаминогликаны (ГАГ). Эти гетерополисахариды построены из дисахаридных единиц, которые и являются их мономерами.

 

По строению мономеров различают 7 типов глюкозаминогликанов:

  1. Гиалуроновая кислота.
  2. Хондроитин-4-сульфат.
  3. Хондроитин-6-сульфат.
  4. Дерматансульфат.
  5. Кератансульфат.
  6. Гепарансульфат.
  7. Гепарин.

 

 

Гиалуроновая кислота.

Впервые была обнаружена в стекловидном теле глаза. Молекулярная масса этого полимера- до 1 000 000 Da. Мономер построен из глюкуроновой кислоты и N-ацетилглюкозамина. Внутри мономера - 1,3-бета-гликозидная связь, между мономерами - 1,4-бета-гликозидная связь. Гиалуроновая кислота может находиться и в свободном виде, и в составе сложных агрегатов. Это единственный представитель глюкозаминогликанов, который не сульфатирован. Считают, что основная функция гиалуроновой кислоты в соединительной ткани – связывание воды. В результате такого связывания межклеточное вещество приобретает характер желеобразного матрикса, способного «поддерживать» клетки. Важна также роль гиалуроновой кислоты в регуляции проницаемости тканей. Приводим структуру повторяющейся дисахаридной единицы в молекуле гиалуроновой кислоты:

Хондроитин-сульфаты.

Два вида: хондроитин-4-сульфат и хондроитин-6-сульфат. Отличаются друг от друга местом расположения остатка серной кислоты. Все они содержат остаток серной кислоты. Мономер хондроитин-сульфата построен из глюкуроновой кислоты и N-ацетилгалактозаминсульфата. Встречаются в связках суставов и в ткани зуба.

Информация о работе Биохимия соединительной ткани