Депарафинизация нефтяного сырья

Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 10:44, реферат

Краткое описание

1. Назначение процессов депарафинизации нефтяного сырья
2. Физико-химические основы процесса
3. Принципиальная схема установки депарафинизации
4. Принципиальная технологическая схема установки депарафинизации в растворе пропана
5. Преимущество и недостаток метода

Вложенные файлы: 1 файл

ДЕПАРАФИНИЗАЦИЯ НЕФТЯНОГО СЫРЬЯ.doc

— 329.00 Кб (Скачать файл)

ДЕПАРАФИНИЗАЦИЯ НЕФТЯНОГО СЫРЬЯ

 

 

Содержание

 

1. Назначение  процессов депарафинизации нефтяного  сырья

2. Физико-химические  основы процесса

3. Принципиальная  схема установки депарафинизации

4. Принципиальная  технологическая схема установки  депарафинизации в растворе пропана

5. Преимущество  и недостаток метода

 

 

 

  1. Назначение процессов депарафинизации нефтяного сырья

 

 Одним из основных  требований к нефтепродуктам  является их подвижность при  низких температурах. Потеря подвижности  топлив и масел объясняется способностью твердых углеводородов (парафинов и церезинов) при понижении температуры кристаллизоваться из растворов нефтяных фракций, образуя структурированную систему, связывающую жидкую фазу. Для получения нефтяных масел с низкой температурой застывания в технологию их производства включен процесс депарафинизации, цель которого удаление твердых углеводородов. В то же время твердые углеводороды, нежелательные в маслах и топливах, являются ценным сырьем для производства парафинов, церезинов и продуктов на их основе, находящих широкое применение.

 Твердые углеводороды  нефтяных фракций, так же как  и жидкие, представляют собой  сложную смесь парафиновых углеводородов  нормального строения разной  молекулярной массы; изопарафиновых, различающихся по числу атомов углерода в молекуле, степени разветвленности и положению заместителей; нафтеновых, ароматических и нафтеноароматических с разным числом колец и длинными боковыми цепями как нормального, так и изостроения. Температура плавления твердых углеводородов зависит от структуры их молекул, что видно на примере трех типов углеводородов с одинаковым числом атомов углерода в молекуле (рис. 1), но с разными структурой и положением заместителя. Так, наиболее резко температура плавления углеводородов снижается при перемещении заместителя: от первого атома углерода в цепи н-алкана ко второму. При дальнейшем перемещении заместителя к центру молекулы температура плавления продолжает снижаться, причем насыщенные заместители (см. кривые 2 и 3) оказывают более сильное влияние на снижение температуры плавления углеводорода, чем фенильные радикалы.

 Химический состав  твердых углеводородов зависит  от температурных пределов выкипания  фракции. В низкокипящих масляных  фракциях нефти содержатся в  основном твердые парафиновые  углеводороды нормального строения. С повышением пределов выкипания содержание н-алканов снижается, а концентрация из парафиновых и циклических углеводородов, особенно нафтеновых, возрастает. Основным компонентом твердых углеводородов (церезинов), концентрирующихся в остатке от перегонки мазута, являются нафтеновые углеводороды с боковыми цепями преимущественно изостроения; в меньшем количестве в них содержатся парафиновые и ароматические углеводороды с длинными алкильными цепями. С повышением температур выкипания фракции растет общее содержание твердых углеводородов и повышается их температура плавления.

 

 

 

Рис. 1. Зависимость температуры  плавления монозамещенных н-алканов от положения и структуры заместителя: 1-фенилэйкозаны (С26Н46); 2-циклогексилэйкозаны (С26Н52); 3-бутилдокозаны (С26Н54)

 

 

 

Сущность процесса депарафинизации  заключается в отделении твердых  углеводородов от жидкой фазы, в  связи с чем важную роль играет их кристаллическая структура, т. е. форма и размер кристаллов, которые в значительной мере предопределяют скорость и четкость разделения фаз. Так как твердые углеводороды нефти являются многокомпонентной смесью, большое значение имеет кристаллическая структура не только углеводородов отдельных гомологических рядов, но и их смесей. Структура кристаллов парафиновых, нафтеновых и ароматических углеводородов, близких по температурам плавления, исследована при помощи электронной микроскопии (увеличение в 13 000 раз). Результаты исследования (рис. 2) показали, что углеводороды всех рядов при кристаллизации из неполярных растворителей, в том числе и из нефтяных фракций, образуют кристаллы орторомбической формы, состоящие из параллельных ромбических плоскостей, т. е. каждая новая плоскость (слой) формируется на ранее образованной. Кристаллы твердых углеводородов, принадлежащих к разным гомологическим рядам, различаются по размерам и числу ромбических плоскостей (слоистости). Наиболее крупные и слоистые кристаллы имеют парафиновые углеводороды (см. рис. 2, а, б). Нафтеновые и особенно ароматические углеводороды характеризуются меньшим размером кристаллов и меньшим числом ромбических плоскостей (см. рис. 47, в – д.).

 

 

 

 

 

Твердые углеводороды нефти  относятся в основном к изоморфным веществам, которые способны при  совместной кристаллизации образовывать смешанные кристаллы из-за наличия  боковых цепей нормального строения в молекулах циклических углеводородов.

 При понижении температуры  в первую очередь выделяются  кристаллы наиболее высокоплавких  углеводородов, на кристаллической  решетке которых последовательно  кристаллизуются углеводороды с  меньшими температурами плавления. На рис 2 г. показаны кристаллы (увеличение в 400 раз), полученные совместной кристаллизации н-алканов С24 и С36, резко различающихся по температуре плавления, из раствора в ацетоне. На рис. 3б дана структура кристаллов н-алкана С36 после отмывки ацетоном. Анализ смытых кристаллов показал, что они принадлежат углеводороду С24, выделившемуся на кристаллах более высокоплавкого углеводорода.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При совместной кристаллизации из углеводородных сред форма кристаллов остается орторомбической, а их размер зависит от содержания циклических углеводородов в смеси с парафинами, и чем больше концентрация таких углеводородов в смеси, тем меньше размер кристаллов. При кристаллизации из растворов в полярных растворителях только парафиновые углеводороды образуют кристаллы правильной орторомбической формы. Кристаллы твердых циклических углеводородов имеют форму ромба, но с усеченными острыми углами ромбических плоскостей. Такую же форму имеют и смешанные кристаллы парафиновых и циклических углеводородов (рис. 4, г, д.), причем чем больше в смеси нафтеновых и особенно ароматических углеводородов, тем меньше размер кристаллов и больше их усечённость. Кристаллическая структура твердых углеводородов изменяется в присутствии смолистых веществ. В зависимости от характера смол либо образуются крупные кристаллы неправильной формы (совместная кристаллизация), либо происходит агломерация кристаллов при сохранении их орторомбической структуры (адсорбция смол на кристаллах).

 

Депарафинизации нефтепродуктов может осуществляться несколькими  методами: кристаллизацией твердых  углеводородов при охлаждении сырья; кристаллизацией твердых углеводородов  при охлаждении раствора сырья в  избирательных растворителях; комплексообразованием с карбамидом; каталитическим превращением твердых углеводородов в низкозастывающие продукты; адсорбционным разделением сырья на высоко- и низко застывающие компоненты; биологическим воздействием. Наиболее широкое промышленное применение получили методы депарафинизации с использованием избирательных растворителей; реже используют процесс карбамидной депарафинизации, главным образом для понижения температуры застывания дистиллятов дизельных топлив.{pagebreak}

 

 

 

2. Физико-химические  основы процесса

 

Этот процесс основан  на разной растворимости твердых  и жидких углеводородов в некоторых  растворителях при низких температурах и может применяться для масляного  сырья любого фракционного состава. Твердые углеводороды масляных фракций ограниченно растворяются в полярных и неполярных растворителях. Как было указано, растворимость таких углеводородов подчиняется общей теории растворимости твердых веществ в жидкостях и характеризуется следующими положениями: растворимость твердых углеводородов уменьшается с увеличением плотности и температур выкипания фракции; для фракций, выкипающих в одном и том же температурном интервале, растворимость твердых углеводородов одного гомологического ряда уменьшается с увеличением их молекулярной массы; растворимость твердых углеводородов увеличивается с повышением температуры.

 

Растворимость углеводородов  в полярных растворителях зависит  от способности их молекул поляризоваться, что связано со структурными особенностями  молекул углеводородов. Вследствие малой поляризуемости молекул твердых углеводородов индуцированные дипольные моменты этих соединений невелики, поэтому растворение твердых углеводородов в полярных растворителях происходит в основном под действием дисперсионных сил. Растворимость остальных компонентов масляных фракций является результатом индукционного и ориентационного взаимодействий, при: чем действие полярных сил настолько велико, что даже при низких температурах эти компоненты остаются в растворенном состоянии. При понижении температуры влияние дисперсионных сил постепенно ослабевает, в то время как влияние полярных сил усиливается; в результате при достаточно низких температурах твердые углеводороды выделяются из раствора и благодаря наличию длинных парафиновых цепей сближаются с образованием кристаллов.

 

Растворитель, применяемый  в процессе депарафинизации, должен:

 

  • при температуре процесса растворять жидкие и не растворять твердые углеводороды сырья;

 

  • обеспечивать минимальную разность между температурами депарафинизации (конечного охлаждения) и застывания депарафинированного масла и способствовать образованию крупных кристаллов твердых углеводородов. Упомянутая разность температур называется температурным эффектом депарафинизации (ТЭД);

 

  • иметь не слишком высокую и не слишком низкую температуру кипения, так как высокая температура кипения приводит к повышению энергетических затрат и способствует окислению углеводородов при регенерации растворителя, низкая — вызывает необходимость проведения процесса при повышенном давлении;

 

  • иметь низкую температуру застывания, чтобы не кристаллизоваться при температуре депарафинизации и не забивать фильтровальную ткань;

 

  • быть коррозионно-неагрессивным;

 

  • быть доступным, по возможности дешевым и приемлемым с точки зрения санитарных норм.

 

Для депарафинизации предложено большое число как полярных, так и неполярных растворителей. Однако только некоторые из них нашли промышленное применение (кетоны, хлорорганические соединения, сжиженный пропан, легкая фракция бензина - нафта). В настоящее время наиболее распространен процесс депарафинизации с использованием полярных растворителей — низкомолекулярных кетонов, в частности метилэтилкетона и ацетона; иногда применяют метилизобутилкетон или сжиженный пропан.

 

Процесс депарафинизации  является наиболее сложным, трудоемким и дорогостоящим в производстве нефтяных масел. Его эффективность и экономичность зависят, в частности, от скорости фильтрования суспензий; последняя в конечном итоге определяется структурой кристаллов твердых углеводородов, образующихся в процессе охлаждения сырья с растворителем, так как от их размеров зависят полнота и скорость отделения твердой фазы от жидкой.

 

Кристаллизация твердых  углеводородов начинается с выделения  из пересыщенного раствора зародышей  кристаллов. При дальнейшем охлаждении раствора кристаллизация протекает на уже образовавшихся центрах кристаллизации. Для получения в процессе кристаллизации крупных кристаллов необходимо, чтобы число зародышей, образующихся в начальной стадии охлаждения, было невелико, так как дальнейшая кристаллизация происходит на этих центрах. При большом числе зародышей образуется мелкокристаллическая структура.

 

Скорость выделения  твердой фазы (в г/с) из раствора на образовавшихся центрах кристаллизации может быть определена по уравнению  И. И. Андреева: 

 

(1)   dx/dt

 

где  - количество вещества, выкристаллизовавшегося в единицу, времени;

 

D — коэффициент диффузии  молекул углеводорода в насыщенном  растворе;

 

б—средняя длина диффузионного  пути; S — поверхность выделившейся твердой фазы; х — концентрация пересыщенного раствора; х' — растворимость зародышей кристаллов при данной степени их дисперсности.

 

Коэффициент диффузии D вычисляют  по уравнению Эйнштейна:

 

(2)  D=(RT/N)*(1/6πrη)

 

где R — универсальная  газовая постоянная; N — число  Авогадро; Т — абсолютная температура кристаллизации; т) —динамическая вязкость среды; г — средний радиус молекулы твердого углеводорода.

 При подстановке  значения D уравнение (1) приобретает  вид:

 

(3) υ=r/6πN=ST/rηδ(X-X’)

 

Следовательно, скорость выделения твердой фазы из раствора на образовавшихся центрах кристаллизации зависит от вязкости среды, средней длимы диффузионного пути, среднего радиуса молекулы твердого углеводорода и разницы между концентрацией раствора и растворимостью выделившейся твердой фазы при температуре Т.

 

 

3. Принципиальная  схема установки депарафинизации

 

 Процесс депарафинизации  с применением избирательных  растворителей осуществляется непрерывно  и слагается из следующих стадий: смешения сырья с растворителем;  термической обработки смеси;  постепенного охлаждения полученного  раствора сырья до заданной  температуры, в результате чего из раствора выделяются кристаллы твердых углеводородов; отделения твердой фазы от жидкой; регенерации растворителя из растворов депарафинированного масла и гача или петролатума.

Информация о работе Депарафинизация нефтяного сырья