Автор работы: Пользователь скрыл имя, 02 Июня 2013 в 20:59, реферат
Химический знак — Fе (феррум). Порядковый номер — 26, электронная формула 1s22s22p63s23p63d64s2. Электронно-графическая формула:
Валентные электроны у атома железа находятся на последнем электронном слое (4s2) и предпоследнем (Зd6). В химических реакциях железо может отдавать эти электроны и проявлять степени окисления +2, +3 и иногда +6.
Железо.
ПОБОЧНАЯ ПОДГРУППА ВОСЬМОЙ ГРУППЫ
Побочная подгруппа восьмой группы периодической системы охватывает три триады d-элементов. Первую триаду образуют элементы железо, кобальт и никель, вторую триаду — рутений, родий и палладий и третью триаду — осмий, иридий и платина.
Большинство элементов
рассматриваемой подгруппы
Химический знак — Fе (феррум). Порядковый номер — 26, электронная формула 1s22s22p63s23p63d64s2. Электронно-графическая формула:
Валентные электроны у атома железа находятся на последнем электронном слое (4s2) и предпоследнем (Зd6). В химических реакциях железо может отдавать эти электроны и проявлять степени окисления +2, +3 и иногда +6.
Сравнение физических и химических свойств элементов восьмой группы показывает, что железо, кобальт и никель, находящиеся в первом большом периоде, очень сходны между собой и в то же время сильно отличаются от элементов двух других триад. Поэтому их обычно выделяют в семейство железа. Остальные шесть элементов восьмой группы объединяются под общим названием платиновых металлов.
СЕМЕЙСТВО ЖЕЛЕЗА
Железо (Ferrum). Нахождение в природе.
Железо—самый распространенный после алюминия металл на земном шаре: оно составляет 4% (масс.) земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном состоянии железо находят только в метеоритах.
Таблица: Некоторые свойства железа, кобальта и никеля
|
Ре |
Со |
N1 |
Радиус атома, нм |
0,126 |
0,125 |
0,124 |
Энергия ионизации |
|
|
|
Э → Э+, эВ |
7,89 |
7,87 |
7,63 |
Э+ → Э2+, эВ |
16,2 |
17,1 |
18,15 |
Э2+, → ЭЗ+, эВ |
30,6 |
33,5 |
35,16 |
Радиус иона Э2+, нм |
0,080 |
0,078 |
0,074 |
Радиус иона Э3+, нм |
0,067 |
0,064 |
|
Стандартная энтальпия ато- |
417,0 |
428,4 |
428,8 |
мизации металла при 25° С, |
|
|
|
кДж на 1 моль атомов |
|
|
|
Плотность, г/см3 |
7,87 |
8,84 |
8,91 |
Температура плавления, °С |
1539 |
1492 |
1455 |
Температура кипения, °С |
2870 |
3100 |
2900 |
Стандартный электродный по |
-0,440 |
-0,277 |
—0,250 |
тенциал процесса Э2 + |
|
|
|
+2е=Э, В |
|
|
|
К важнейшим рудам железа относятся магнитный железняк Fe3O4, красный железняк Fe2O3, бурый железняк 2Fe2O3•3H2Oи шпатовый железняк FeСОз. Встречающийся в больших количествах пирит, или железный колчедан, FeS2 редко применяется в металлургии, так как чугун из него получается очень низкого качества из-за большого содержания серы. Тем не менее железный колчедан имеет важнейшее применение — он служит исходным сырьем для получения серной кислоты
В пределах СССР месторождения железных руд находятся на Урале, где целые горы (например, Магнитная, Качканар, Высокая и др.) образованы магнитным железняком превосходного качества. Не менее богатые залежи находятся в Криворожском районе и на Керченском полуострове. Криворожские руды состоят из красного железняка, керченские — из бурого железняка. Большие залежи железных руд имеются вблизи Курска, на Кольском полуострове, в Западной и Восточной Сибири и на Дальнем Востоке. Общее количество железных руд в СССР составляет больше половины мировых запасов.
Значение железа и его сплавов в технике. Развитие металлургии.
Из всех добываемых металлов железо имеет наибольшее значение. Вся современная техника связана с применением железа и его сплавов. Насколько важную роль играет железо, видно уже из того, что количество добываемого железа примерно в 15 раз превосходит добычу всех остальных металлов вместе взятых.
До XIX века из сплавов железа были известны в основном его сплавы с углеродом, получившие названия стали и чугуна. Однако в дальнейшем были созданы новые сплавы на основе железа, содержащие хром, никель и другие элементы. В настоящее время сплавы железа подразделяют на углеродистые стали, чугуны, легированные стали и стали с особыми свойствами
В технике сплавы железа принято называть черными металлами, а их производство — черной металлургией.
Добыча железа особенно быстро росла в прошлом столетии. В начале XIX века мировая выплавка чугуна равнялась всего 0,8 млн. т в год, а к концу она составила уже 66 млн. т в год. 'В 1962 г. в капиталистических странах было выплавлено 176 млн. т чугуна и ферросплавов и 245 млн. т стали.
По выплавке черных металлов царская Россия сильно отставала от промышленно развитых стран. Русская металлургическая промышленность выпустила в 1913 г. всего 4,2 млн. т чугуна и столько же стали. После первой мировой войны производство чугуна резко упало и составляло в 1920 г. всего 2,7% от выпуска 1913 г. Восстановление черной металлургии, осуществлявшееся в исключительно тяжелых условиях, потребовало огромных усилий и продолжительного времени; только в 1929 г. выплавка стали достигла уровня 1913г.
Быстрое развитие советской металлургии началось в годы первых пятилеток. Была полностью реконструирована металлургическая промышленность на юге европейской части СССР и создана новая угольно-металлургическая база в восточных районах нашей страны. Были построены крупнейшие металлургические заводы — Магнитогорский, Кузнецкий и др. Уже к концу первой пятилетки выплавка чугуна достигла 147% по сравнению с уровнем 1913 г. Восстановив дореволюционный уровень выплавки чугуна в 1929г., советские металлурги в следующие восемь лет увеличили выпуск чугуна почти в 3,5 раза. Для такого прироста металлургии США потребовалось в свое время 20 лет, Германии — 23 года.
Значительно выросла за последние годы и рудная база металлургии — осваивались новые железорудные месторождения в Казахстане, Сибири и в районе Курской магнитной аномалии. Добыча железной руды в 1977 г. достигла 240 млн. т.
Физические свойства железа.
В виде простого вещества Fе — серебристо-белый металл. В соответствии с усилением вклада ковалентной связи (за счет 3d-, 4d- и 6d-электронов соответственно) в ряду Fе—Ru—Оs теплота сублимации, температуры плавления и кипения заметно возрастают.
α-Fe β- Fe
γ- Fe
δ- Fe
Железо имеет четыре модификации (рис. 235). До 770°С устойчиво α-Fе с объемноцентрированной кубической решеткой и ферромагнитными свойствами. При 770°С α-Fе переходит в β-Fе; у него исчезают ферромагнитные свойства и железо становится .парамагнитным, но кристаллическая структура его существенно не изменяется. При 912°С происходит полиморфное превращение, при котором изменяется структура кристалла: из объемноцентрированной переходит в гранецентрированную кубическую структуру γ-Fе, а металл остается парамагнитным. При 1394°С происходит новый полиморфный переход и образуется δ-Fе с объемноцентрированной кубической решеткой, которое существует вплоть до температуры плавления железа (1539°С).
Диаграмма состояния системы железо — углерод.
В 30-х годах XIX века русский инженер П. П. Аносов впервые применил микроскоп для изучения структуры стали и ее изменения после ковки и термической обработки. В 60-х годах XIX века подобные исследования стали проводиться и за границей.
В 1868 г. Д. К. Чернов впервые указал на существование определенных температур («критических точек»), зависящих от содержания углерода в стали и характеризующих превращения одной микроструктуры стали в другую. Этим было положено начало изучению диаграммы состояния Fе—С, а 1868 г. стал годом возникновения металловедения — науки о строении и свойствах металлов и сплавов. Французский исследователь Ф. Осмонд стал пользоваться только что изобретенным Ле Шателье пирометром и уточнил значения «критических точек». Он описал характер микроструктурных изменений, наблюдаемых при переходе через эти точки, и дал названия важнейшим структурам железоуглеродистых сплавов;
эти названия употребляются до сих пор. С тех пор учеными различных стран было выполнено огромное количество работ, посвященных изучению сплавов железа с углеродом и диаграммы состояния системы Fе—С. Такого рода работы проводятся и в настоящее время. В них уточняются положения линий на диаграмме состояния в связи с применением более чистых веществ и более точных и современных методов.
Температура плавления железа равна 1539 ± 5 °С. Железо образует две кристаллические модификации: α-железо и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая — кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912°С и от 1394 °С до температуры плавления. Между 912 и 1394 °С устойчиво γ-железо. Температурные интервалы устойчивости α- и γ-железа обусловлены характером изменения энергии Гиббса обеих модификаций при изменении температуры (см. рис. 166). При температурах ниже 912 и выше 1394 °С энергия Гиббса α-железа меньше энергии Гиббса γ-железа, а в интервале 912—1394 °С— больше.
Температуры фазовых превращений железа хорошо видны на кривой охлаждения в виде остановок—горизонтальных площадок. Как видно, кроме площадок, отвечающих 'перечисленным точкам, на кривой охлаждения имеется еще одна остановка—при 768 °С. Эта температура связана не с перестройкой решетки, а с изменением магнитных свойств железа. При темверату-рах выше 768 °С железо немагнитно, а ниже 768 °С — магнитно. Немагнитное α-железо иногда называют β-железом, а модификацию α-железа, устойчивую
при температурах от 1392°С до плавления,—δ-железом. '
Железо — серебристый пластичный металл. Оно хорошо поддается ковке, прокатке и другим видам механической обработки, Механические свойства железа сильно зависят от его чистоты — от содержания в нем даже весьма малых количеств других элементов.
Твердое железо обладает способностью растворять в себе многие элементы. В частности, растворяется в железе и углерод. Его растворимость сильно зависит от кристаллической модификации железа и от температуры. В α- железе углерод раствор очень незначительно, в γ- железе гораздо лучше. Раствор в γ- железе термодинамически устойчив в более широком интервале температур, чем чистое γ- железо. Твердый раствор углерода в α- железе называется ферритом, твердый раствор углерода в γжелезе — аустенитом.
Содержанию в железе 6,67% (масс.) углерода отвечает химическое соединение — карбид железа, или цементит, FeзС. Это вещество имеет сложную кристаллическую структуру и характеризуется высокой твердостью (близка к твердости алмаза) и хрупкостью. При температуре около 1600 °С цементит плавится *.
Механические свойства феррита и аустенита зависят от содержания в них углерода. Однако при всех концентрациях углерода феррит и аустенит менее тверды и более пластичны, чем цементит.
Диаграмма состояния системы железо—углерод, дающая представление о строении железоуглеродных сплавов, имеет очень большое значение. С ее помощью можно объяснить зависимость свойств сталей и чугунов от содержания в них углерода и от термической обработки. Она служит основой при выборе железоуглеродных сплавов, обладающих теми или иными заданными свойствами.
* Цементит термодинамически устойчив не при всех условиях, отвечающих диаграмме состояния системы Fе—С. Однако распад цементита, сопровождающийся выделением графита, в большинстве случаев протекает настолько медленно, что практически не осуществляется. Графит выделяется только при образовании чугуна в определенных условиях
Это самая важная часть диаграммы, поскольку практическое применение имеют сплавы железа, содержащие не более 5% углерода.
Диаграмма состояния системы Fе—С сложнее, чем рассмотренные в главе XVI основные типы диаграмм состояния металлических систем. Особенности ее обусловлены уже упомянутыми обстоятельствами: существованием двух модификаций кристаллического железа, способностью обеих этих модификаций
Рис. 168. Диаграмма состояния системы железо—углерод.
образовывать твердые растворы с углеродом, способностью железа вступать в химическое соединение с углеродом, образуя цементит.
Левая ось диаграммы соответствует чистому железу, правая — карбиду FезС (цементиту). Точки A и D показывают температуру плавления железа и карбида, точки G и N—температуры превращений α- и γ- железа друг в друга.
Линия АВСD это кривая температур начала кристаллизации жидких сплавов, линия АНJЕСP — кривая температур начала плавления твердых сплавов. Все линии, лежащие ниже последней кривой, отвечают равновесиям между твердыми фазами.
Область, лежащая выше линии АВСD, отвечает жидкому сплаву. Области, примыкающие к левой вертикали, соответствуют твердым растворам углерода в железе: линия АНN ограничивает область твердого раствора углерода в α-железе при высоких температурах (область высокотемпературного феррита), линия NJESG ограничивает область твердого раствора углерода в γ-железе (область аустенита), линия GPQ — область твердого раствора углерода в α-железе при низких температурах (область низкотемпературного феррита). Перечисленным областям соответствуют гомогенные системы: структура как расплава, так и твердых растворов однородна в каждой из этих фаз.
Остальным областям диаграммы отвечают гетерогенные системы — смеси кристаллов двух фаз или кристаллов и расплава.
Рассмотрим важнейшие превращения, происходящие при медленном охлаждении расплавов различных концентраций. Это поможет нам разобраться в том, какие сплавы соответствуют областям гетерогенности диаграммы.
Информация о работе Железо.Свойства и значение в жизни человека