Автор работы: Пользователь скрыл имя, 20 Июня 2014 в 08:54, реферат
Полная характеристика химического элемента. Физические и химические свойства золота. Добывание и применение.
Золото
Платина ← Золото → Ртуть
Ag
↑
Au
↓
Rg
79Au
Мягкий ковкий жёлтый металл
Свойства атома
Имя, символ, номер
Зо́лото / Aurum (Au), 79
Атомная масса
(молярная масса) - 196,966569(4) а. е. м. (г/моль)
Электронная конфигурация
[Xe] 4f14 5d10 6s1
Радиус атома - 144 пм
Химические свойства:
Ковалентный радиу - 134 пм
Радиус иона - (−3e) 185 (+1e) 137 пм
Электроотрицательность - 2,64 (шкала Полинга)
Электродный потенциал
Au←Au3+ 1,50 В, Au←Au+ 1,70В
Степени окисления
−1,1,3,5
Энергия ионизации
(первый электрон)
889,3 (9,22) кДж/моль (эВ)
Термодинамические свойства простого вещества:
Плотность (при н. у.)
19,3-19,32[2][3] г/см³
Температура плавления
1337,33 К (1064,18 °C, 1947,52 °F)[2]
Температура кипения
3129 К (2856 °C, 5173 °F)[2]
Теплота плавления
12,68 кДж/моль
Теплота испарения
~340 кДж/моль
Молярная теплоёмкость
25,39[4] Дж/(K·моль)
Молярный объём
10,2 см³/моль
Кристаллическая решётка простого вещества:
Структура решётки
кубическая гранецентрированная типа Cu, пр. группа Fm3m
Параметры решётки
4,0781 Å
Отношение c/a
1
Температура Дебая
170,00 K
Прочие характеристики:
Теплопроводность
(300 K) 318 Вт/(м·К)
Зо́лото — элемент 11 группы (по устаревшей классификации — побочной подгруппы первой группы), шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 79. Обозначается символом Au (лат. Aurum). Простое вещество золото — благородный металл жёлтого цвета.
Физические свойства
Чистое золото — мягкий металл жёлтого цвета. Красноватый оттенок некоторым изделиям из золота, например, монетам, придают примеси других металлов, в частности, меди. В тонких плёнках золото просвечивает зелёным. Золото обладает высокой теплопроводностью и низким электрическим сопротивлением.
Золото — очень тяжёлый металл: плотность чистого золота равна 19,32 г/см³ (шар из чистого золота диаметром 46,237 мм имеет массу 1 кг). Среди металлов по плотности занимает шестое место: после осмия, иридия, рения, платины и плутония. Высокая плотность золота облегчает его добычу. Самые простые технологические процессы, такие, как, например, промывка на шлюзах, могут обеспечить весьма высокую степень извлечения золота из промываемой породы.
Золото — очень мягкий металл: твёрдость по шкале Мооса ~2,5, по Бринеллю 220—250 МПа (сравнима с твёрдостью ногтя).
Золото также высокопластично: оно может быть проковано в листки толщиной до ~0,1 мкм (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем — окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку с линейной плотностью до 2 мг/м.
Температура плавления золота 1064,18 °C (1337,33 К)[2], кипит при 2856 °C (3129 К). Плотность жидкого золота меньше, чем твёрдого, и составляет 17 г/см3 при температуре плавления. Жидкое золото довольно летуче, и активно испаряется задолго до температуры кипения.
Теплопроводность — 320 Вт/м·К, удельная теплоёмкость — 129 Дж/(кг·К), удельное электрическое сопротивление — 0,023 Ом·мм2/м.
Электроотрицательность по Полингу — 2,4.
Химические свойства
Золото — один из самых инертных металлов, стоящий в ряду напряжений правее всех других металлов. При нормальных условиях оно не взаимодействует с большинством кислот и не образует оксидов, поэтому его относят к благородным металлам, в отличие от обычных металлов, разрушающихся под действием кислот и щелочей. В XIV веке была открыта способность царской водки растворять золото, что опровергло мнение об его химической инертности.
Наиболее устойчивая степень окисления золота в соединениях +3, в этой степени окисления оно легко образует с однозарядными анионами (F−, Cl−. CN−) устойчивые плоские квадратные комплексы [AuX4]−. Относительно устойчивы также соединения со степенью окисления +1, дающие линейные комплексы [AuX2]−. Долгое время считалось, что +3 — высшая из возможных степеней окисления золота, однако, используя дифторид криптона, удалось получить соединения Au+5 (фторид AuF5, соли комплекса [AuF6]−). Соединения золота(V) стабильны лишь со фтором и являются сильнейшими окислителями.
При взаимодействии атомарного фтора с пентафторидом золота были получены летучие фториды золота (VI) и (VII): AuF6 и AuF7. Они крайне неустойчивы, особенно AuF6, который дисмутирует с образованием AuF5 и AuF7.
Степень окисления +2 для золота нехарактерна, в веществах, в которых она формально равна 2, половина золота, как правило, окислена до +1, а половина — до +3, например, правильной ионной формулой сульфата золота(II) AuSO4 будет не Au2+(SO4)2−, а Au1+Au3+(SO4)2−2, однако обнаружены комплексы, в которых золото всё-таки имеет степень окисления +2.
Существуют соединения золота со степенью окисления −1, называемые ауридами. Например, CsAu (аурид цезия), Na3Au (аурид натрия).
Из чистых кислот золото растворяется только в концентрированной селеновой кислоте при 200 °C:
Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:
Цианоаураты легко восстанавливаются до чистого золота:
В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °C с образованием хлорида золота(III), то в концентрированном водном растворе соляной и азотной кислот («царская водка») золото растворяется с образованием хлораурат-иона уже при комнатной температуре:
Кроме того, золото растворяется в хлорной воде[9]. Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, образуя трибромид AuBr3.
Со фтором золото реагирует в интервале температур 300−400 °C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.
Золото также растворяется в ртути, образуя легкоплавкий сплав (амальгаму), содержащий интерметаллиды золото-ртуть.
Известны золотоорганические соединения — например, этилдибромид золота или ауротиоглюкоза.
Физиологическое воздействие
Некоторые соединения золота токсичны, накапливаются в почках, печени, селезёнке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении. Органические соединения золота (препараты кризанол и ауранофин) применяются в медицине при лечении аутоиммунных заболеваний, в частности ревматоидного артрита.
Происхождение
Зарядовое число 79 золота делает его одним из высших по количеству протонов элементов, которые встречаются в природе. Ранее предполагалось, что золото образовывалось при нуклеосинтезе cверхновых звёзд, однако по новой теории предполагается, что золото и другие элементы тяжелее железа образовались в результате разрушения нейтронных звёзд. Космические обсерватории в состоянии обнаружить образующееся золото, «но у нас нет спектроскопических доказательств, что [такие] элементы действительно образуются». По этой теории в результате взрыва нейтронной звезды содержащая металлы пыль (в том числе тяжёлые металлы, например, золото) выбрасывается в космическое пространство, в котором оно впоследствии конденсируется, так произошло и в Солнечной системе и на Земле. Поскольку Земля была в расплавленном состоянии, когда она была только что создана, почти всё золото в настоящее время на Земле находится в ядре. Большинство золота, которое сегодня присутствует в земной коре и мантии, было доставлено на Землю астероидами во время поздней тяжелой бомбардировки.
На Земле золото находится в рудах в породах, образованных начиная с докембрийского периода.
Геохимия золота
Содержание золота в земной коре очень низкое — 4,3·10-10 % по массе (0,5-5 мг/т), но месторождения и участки, резко обогащённые металлом, весьма многочисленны. Золото содержится и в воде. Один литр и морской, и речной воды содержит менее 5·10−9 граммов Au, что примерно соответствует 5 килограммам золота в 1 кубическом километре воды.
Золоторудные месторождения возникают преимущественно в районах развития гранитоидов, небольшое их количество ассоциирует с основными и ультраосновными породами.
Золото образует промышленные концентрации в постмагматических, главным образом гидротермальных, месторождениях.
В экзогенных условиях золото является очень устойчивым элементом и легко накапливается в россыпях. Однако субмикроскопическое золото, входящее в состав сульфидов, при окислении последних приобретает способность мигрировать в зоне окисления. В результате золото иногда накапливается в зоне вторичного сульфидного обогащения, но максимальные его концентрации связаны с накоплением в зоне окисления, где оно ассоциирует с гидроокислами железа и марганца. Миграция золота в зоне окисления сульфидных месторождений происходит в виде бромистого и йодистого соединений в ионной форме. Некоторыми учёными допускается растворение и перенос золота сульфатом окиси железа или в виде суспензионной взвеси.
В природе известны 15 золотосодержащих минералов: самородное золото с примесями серебра, меди и др., электрум Au и 25 — 45 % Ag; порпесит AuPd; медистое золото, бисмутоаурит (Au, Bi); родистое золото, иридистое золото, платинистое золото. Встречается также вместе с осмистым иридием (ауросмирид)[20] Остальные минералы представлены теллуридами золота: калаверит AuTe2, креннерит AuTe2, сильванит AuAgTe4, петцит Ag3AuTe2, мутманит (Ag, Au)Te, монтбрейит Au2Te3, нагиагит Pb5AuSbTe3S6.
Для золота характерна самородная форма. Среди других его форм стоит отметить электрум, сплав золота с серебром, который обладает зеленоватым оттенком и относительно легко разрушается при переносе водой. В горных породах золото обычно рассеяно на атомарном уровне. В месторождениях оно зачастую заключено в сульфиды и арсениды.
Различаются первичные месторождения золота — россыпи, в которые оно попадает в результате разрушения рудных месторождений, и месторождения с комплексными рудами — в которых золото извлекается в качестве попутного компонента.
Добыча золота
Люди добывают золото с незапамятных времён. С золотом человечество столкнулось уже в V тыс. до н. э. в эпоху неолита благодаря его распространению в самородном состоянии.
По предположению археологов, начало системной добычи было положено на Ближнем Востоке, откуда золотые украшения поставлялись, в частности, в Египет. Именно в Египте в гробнице королевы Зер и одной из королев Пу-аби Ур в Шумерской цивилизации были найдены первые золотые украшения, датируемые III тыс. до н. э.
В России принято считать началом золотодобычи 21 мая (1 июня) 1745 г
Получение
Золотой самородок
Для получения золота используются его основные физические и химические свойства: присутствие в природе в самородном состоянии, способность реагировать лишь с немногими веществами (ртуть, цианиды). С развитием современных технологий более популярными становятся химические способы.
В 1947 году американские физики Ингрем, Гесс и Гайдн проводили эксперимент по измерению эффективного сечения поглощения нейтронов ядрами ртути. В качестве побочного эффекта эксперимента было получено около 35 мкг золота. Таким образом, была осуществлена вековая мечта алхимиков — трансмутация ртути в золото. Однако экономического значения такое производство золота не имеет, так как обходится во много раз дороже добычи золота из самых бедных руд[28].
Промывка[править исходный текст]
Метод промывки основан на высокой плотности золота, благодаря которой в потоке воды минералы с плотностью меньше золота (а это почти все минералы земной коры) смываются, и металл концентрируется в тяжёлой фракции песка, которая называется шлихом. Этот процесс называется отмывкой шлиха или шлихованием. В небольших объёмах такую промывку можно проводить вручную с помощью промывочного лотка. Этот способ используется с древности и до нашего времени для отработки маленьких россыпных месторождений старателями, но основное его применение — поиск месторождений алмазов, золота и других ценных металлов.
Промывка используется для разработки крупных россыпных месторождений, но при этом применяются специальные технические устройства: драги и промывочные установки. Полученные шлихи, кроме золота, содержат множество других тяжёлых минералов, и металл из них извлекается путём, например, амальгамации.
Методом промывки разрабатываются все россыпные месторождения золота, но ограничено он применяется и на коренных месторождениях. Для этого породу дробят и затем подвергают промывке. Этот метод не может быть применён на месторождениях с рассеянным золотом, где оно так распылено в породе, что после дробления не обособляется в отдельные зёрна и смывается при промывке вместе с другими минералами. К сожалению, при промывке теряется не только мелкое золото, которое легко смывается с промывочной колоды, но и крупные самородки, гидравлическая крупность которых не позволяет им спокойно оседать в ячейках коврика. Поэтому на драгах и на промприборах обязательно следят за крупными катящимися обломками — это вполне могут оказаться самородки.
Амальгамация
Метод амальгамации основан на способности ртути образовывать сплавы — амальгамы с различными металлами, в том числе и с золотом. В этом методе увлажнённая дроблёная порода смешивалась со ртутью и подвергалась дополнительному измельчению в мельницах — бегунных чашах. Амальгаму золота (и сопутствующих металлов) извлекали из получившегося шлама промывкой, после чего ртуть отгонялась из собранной амальгамы и использовалась повторно. Метод амальгамации известен с I века до н. э., наибольшие масштабы приобрёл в американских колониях Испании начиная с XVI века: это стало возможным благодаря наличию в Испании огромного ртутного месторождения — Альмаден. В более позднее время использовался метод внешней амальгамации, когда дроблёная золотоносная порода при промывке пропускалась через обогатительные шлюзы, выстланные медными листами, покрытыми тонким слоем ртути. Метод амальгамации применим только на месторождениях с высоким содержанием золота или уже при его обогащении. Сейчас он используется очень редко, главным образом старателями в Африке и Южной Америке.