Автор работы: Пользователь скрыл имя, 29 Января 2015 в 06:32, контрольная работа
Современные требования к гибким упаковочным материалам застав-ляют производителей искать пути и способы удовлетворения возрастающего спроса. Развитие новых технологий в области производства полимерных материалов на базе достижений физики и химии позволило создавать многослойные и комбинированные материалы с новыми характеристиками (в том числе с барьерными свойствами), одним словом, упаковку, способную длительно сохранять продукты и товары массового спроса.
Многослойные и комбинированные материалы являются одним из видов композиционных материалов.
ВВЕДЕНИЕ 3
1. КОМБИНИРОВАННЫЕ И МНОГОСЛОЙНЫЕ МАТЕРИАЛЫ 4
2. ОБЛАСТЬ ПРИМЕНЕНИЯ МНОГОСЛОЙНЫХ МАТЕРИАЛОВ 9
3. СПОСОБЫ ПРОИЗВОДСТВА МНОГОСЛОЙНЫХ ПЛЕНОК 10
4. УПАКОВОЧНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ 12
5. ТАРОУПАКОВОЧНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ СИНТЕТИЧЕСКИХ ПОЛИМЕРОВ 18
6. АЛЮМИНИЕВАЯ ФОЛЬГА 29
7. СТЕКЛООБРАЗУЮЩИЕ ПОЛИМЕРЫ (МАТЕРИАЛЫ) 35
8. БОПП-ПЛЕНКА 37
ЗАКЛЮЧЕНИЕ 43
СПИСОК ЛИТЕРАТУРЫ 44
Наиболее известные представители: поливинилхлорид, поливинилиденхлорид, сополимеры винилхлорида с винилиденхлоридом, винилхлорида с винилацетатом, поливиниловый спирт, полистирол и его сополимеры.
Поливинилхлорид (ПВХ) получают методами радикально-цепной полимеризации в блоке или суспензии. ПВХ - аморфный полимер.
Одной из трудностей, связанных с его переработкой, является его термическая нестабильность, сочетающаяся с высокой вязкостью расплава. Поэтому переработка ПВХ экструзией чрезвычайно сложна и требует тщательного подбора оборудования. Широко распространенный метод переработки ПВХ в пленку или лист - каландрование (вальцевание).
Из основного полимера может быть получен широкий спектр пленок с различными свойствами за счет варьирования состава и степени ориентации. Изменения в составе, главным образом, введение пластификатора, позволяет получить пленки от твердых, хрупких до мягких, клейких, растяжимых. Изменяя степень ориентации, получают пленки от полностью одноосноориентированных до равнопрочных двухосноориентированных.
Непластифиированные пленки ПВХ содержат стабилизаторы с целью предотвращения термической деструкции, сопровождающейся выделением НСL. Плотность пленки высокая (1,35-1,41 г/см3). Проницаемость водяных паров выше, а проницаемость газов ниже у ПВХ, чем у полиодефинов. Поэтому пленка из ПВХ обладает масло- и жиростойкостью. Кроме стабилизаторов пленки из ПВХ содержат антистатическую добавку для предотвращения слипания за счет накопления статического электричества.
Свойства пластифицированных поливинилхлоридных пленок зависят от природы и количества пластификатора. В целом увеличение содержания пластификатора увеличивает прозрачность и мягкость пленки, улучшая се свойства при низких температурах. Температура стеклования при этом смещается в область низких температур. Пластифицированные ПВХ-пленки могут иметь превосходный блеск и прозрачность, будучи модифицированы соответствующими стабилизаторами и пластификаторами могут приобретать превосходный блеск и прозрачность.
Пластифицированные и непластифицированные ПВХ-пленки герметизируются высокочастотной сваркой. На оба типа пленок может быть нанесена печать без предварительной обработки поверхности в отличие от ПП и ПЭ. Тонкие пленки из пластифицированного ПВХ широко используются как усадочные и растяжимые для заворачивания подносов и лотков с пищевыми продуктами, например со свежим мясом. Они должны обеспечить высокую кислородопроницаемость для сохранения пурпурного цвета свежего мяса. Толстые пленки пластифицированного поливинилхлорида используются для производства упаковки для шампуня, смазочных масел и т.д.
Благодаря прочности и легкой формуемости пленки из непластифицированного ПВХ и сополимеров используют для термоформования изделий; изделия снабжаются крышками из АL фольги с многоцветной печатью.
Отличительным свойством материалов на основе сополимеров поливннилхлорида и поливинилиденхлорида (ПВДХ) является очень низкая паро- и газопроницаемость.
ПВДХ часто используют как усадочную пленку для заворачивания птицы, ветчины, сыра. Использование для этих целей пленок из ПВДХ, обладающих низкой газопроницаемостью, диктуется необходимостью поддерживать вакуум для исключения возможности роста бактерий. Вакуумированные мешки ПВДХ используют также для созревания сыров. Применение ПВДХ при этом исключает дегидратацию и образование корки, позволяя получать более мягкие сыры. ПВДХ-пленки используют в системе общественного питания и в быту для заворачивания продуктов, чтобы сохранить их свежесть. Пленки получают экструзией с поливом на барабан и с раздувом рукава. Последний метод предпочтительнее для производства ориентированных пленок. Если ПВДХ пленку производят экструзией через плоскощелевуго головку, то ее необходимо резко охладить (экструзия в холодную воду или полив на охлаждающий барабан), чтобы предотвратить кристаллизацию. Предпочтительным методом производства двухосноориентированных пленок является экструзия с раздувом рукава, которая обеспечивает одновременную поперечную и продольную ориентацию. Ориентированная ПВДХ-пленка прозрачна, имеет хорошие прочностные свойства, особенно при продавливании, высокое сопротивление раздиру, но ее сложно использовать на упаковочном оборудовании из-за мягкости и "цепляемости". ПВДХ-пленки используются в качестве компоненты в многослойной конструкции, особенно при соэкструзии. При этом можно получить очень тонкий слой ПВДХ в многослойном пленочном материале, что не удается получить на монопленке. ПВДХ широко используется для покрытия различных подложек, таких, как бумага, целлофан, ПП.
Поливинилацетат (ПВА) получается полимеризацией винилацетата. В результате получается материал, похожий на ПВХ, используемый в основном в виде адгезива получения комбинированных материалов.
В сополимерах винилхлорида с винилацетатом ацетатная группа крупнее, чем атом хлора, что предотвращает близкий контакт между цепями. По сути, это внутренний пластификатор. Если нужна высокая гибкость, то применяют пластификаторы.
Поливиниловый спирт (ЛВС) получают гидролизом поливинилацетата.
Самой главной отличительной особенностью ПВС является его растворимость в воде. Сополимеры этилена и винилового спирта (ПЭВС) имеют превосходные барьерные свойства; низкую проницаемость, которая, однако, растет с увеличение влажности. Соэкструзия ПВС с полиолефинами (ПЭВД, ПП) позволяет увеличить барьерные свойства материала по отношению к воде и ее парам.
Полистирол - твердый, жесткий, аморфный полимер. ПС хорошо окрашивается и обрабатывается механическими способами. Двухосноориентированная пленка обладает прекрасной прозрачностью. Температура размягчения составляет 90-95°С. Ориентированный полистирол имеет среднюю газопроницаемость (выше чем у ПП, но ниже, чем у ПЭНП), но высокую паропроницаемость. Паропроницаемость быстро понижается при температурах ниже 0°С, что позволяет использовать ПС для упаковки продуктов при низких температурах. Из ориентированной ПС пленки методом термоформования получать изделия сложной конфигурации.
Ориентированный ПС толщиной менее 75 мкм используют для "окошек" в картонных упаковочных коробках. Более толстые пленки используются для получения стаканчиков для торговых автоматов, подносов для фасованного свежего мяса, с тем, чтобы видеть при покупке обе стороны упаковываемого продукта.
Ударопрочный полистирол (УПС) представляет собой блоксополимер стирола с каучуком. В немодифицированном состоянии ПС - хрупкий материал, и его удельная ударная вязкость недостаточна для многих применений.
Ударопрочный ПС более гибок, имеет большую ударную прочность, но меньшую прочность при растяжении и термическую стойкость, чем немодифицированный ПС. Химические свойства немодифицированного ПС одинаковы со свойствами. Ударопрочный ПС - превосходный материал для получения различных изделий методом термоформования. Введение в ПС синтетических каучуков, уменьшая хрупкость, снижает прозрачность ПС.
Вспененный полистирол обладает высокой жиростойкостью, является прекрасным теплоиэолятором. Применяется для изготовления различных упаковочных изделий методом термоформования (прокладки в ящики для яблок, коробочки для фасовки яиц, подносы и лотки для расфасовки свежего мяса, рыбы, чипсов и т.д.).
Сополимеры стирола с акрилонитрилом (САН) имеют более высокую химическую стойкость по сравнению с базовым полимером ПС.
АБС-пластик - сополимер стирола, бутадиена, акрилонитрила. Его свойства варьируются в широких пределах в зависимости от состава композиции и метода производства. АБС пластик имеет более высокую ударную вязкость, химическую стойкость и пластичность, чем УПС. Применяется в виде банок и подносов.
ПЭТФ - сложный полиэфир, выпускается в России под названием "лавсан", за рубежом - "майлар", "терилен". ПЭТФ является кристаллическим полимером, при быстром охлаждении расплава можно получить аморфный полимер, который при нагреве выше 80°С начинает кристаллизоваться. Присутствие кислорода в цепи придает полимеру хорошую морозостойкость (-70°С), а наличие бензольного кольца - высокую теплостойкость. Полиэфирные пленки жестки и прочны, высокопрозрачны. Однако скольжение у них плохое, если не введены специальные скользящие добавки, хотя они придают пленке легкую мутность; никаких других добавок в материал не вводят. Тепловая сварка затруднена из-за усадки и кристаллизации, приводящей к охрупчиванию материала. Поэтому ПЭТФ пленка используется в сочетании с нанесенным на нее ПЭНП, обладающим прекрасной свариваемостью. Кроме сварки комбинация с ПЭНП обеспечивает материалу более высокие барьерные свойства относительно воды и ее паров. ПЭТФ пленки стойки к раздиру и износу. Паро- и газопроницаемость ПЭТФ низкая и имеет приблизительно тот же порядок, что и у ПЭНП. Проницаемость к газам и запахам такая же низкая, как и у ПЭНП. Изделия из ПЭТФ стойки к маслам и жирам, ко многим растворителям. ПЭТФ - прекрасный диэлектрик. Область его использования достаточно широка. Из ПЭТФ изготавливают термоусадочные пленки и многослойные материалы, используемые в тароупаковочной отрасли, шестерни, кронштейны, канаты, ремни и другие материалы технического назначения.
ПК - линейный полиэфир угольной кислоты. Он очень необычен из-за сочетания высокой термостойкости, высокой ударной вязкости и прозрачности. Его свойства мало меняются с ростом температуры. Проницаемость для газа и паров воды высокая, поэтому для улучшения барьерных свойств на ПК пленку наносят покрытие. Выдающимся свойством ПК пленки является ее размерная стабильность, она совершенно непригодна в качестве усадочной пленки; нагревание пленки до 150°С (т.е. выше точки размягчения) в течение 10 мин. дает усадку всего 2%. ПК легко сваривается как импульсным, так и ультразвуковым способами, а также обычной сваркой горячими электродами. Пленку легко формовать в изделия, при этом возможны большие степени вытяжки с хорошим воспроизведением деталей форм. Хорошую печать можно получить разными методами (шелкографии, флексографии, гравировки). Из поликарбоната формуют разогреваемые подносики с готовыми блюдами (упаковка типа "кипяти-в-упаковке"). В обоих случаях используют высокую теплостойкость.
Основное применение ПК - упаковка пищи при повышенных температурах. Перспективные области применения - пакеты, стерилизуемые в автоклавах и упаковки для микроволновых печей, упаковка медицинских изделий.
Полиамиды (ПА) - это группа пластмасс с известными названиями: "капрон", "найлон", "анид" и др. В составе макромолекул полимера присутствует амидная связь и метиленовые группы, повторяющиеся от 2 до 10 раз. Полиамиды - кристаллизующиеся полимеры. Свойства различных полиамидов довольно близки. Они являются жесткими материалами с высокой прочностью при разрыве и высокой стойкостью к износу, имеют высокую температуру размягчения и выдерживают стерилизацию паром до 140°С. ПА сохраняет эластичность при низких температурах, так что температурный интервал их использования очень широк. Однако полиамиды отличает довольно высокое водопоглощение. Однако после высушивания первоначальный уровень свойств восстанавливается. В этом отношении лучше ПА-12, у которого водопоглощение меньше, чем у ПА-6 и ПА-6,6. ПА обладают высокой прочностью при ударе и продавливании, легко свариваются высокочастотным методом. ПА обладает очень высокой паропроницаемостью и низкой проницаемостью по отношению к газам, поэтому их применяют в вакуумной упаковке. На ПА легко наносится печать. Прозрачность ПА-пленок высока, особенно двуосно-ориентированных, блеск также улучшается при ориентации. Электрические и механические свойства материала зависят от влажности окружающей среды. Новейшей разработкой является получение аморфного ПА. Он имеет меньшую паропроницаемость по сравнению с кристаллическими полиамидами. [1], [3]
В чем же заключаются преимущества алюминия перед другими упаковочными материалами? Каковы основные особенности данного вида сырья? Какие тенденции в сфере применения алюминия и алюминиевой фольги на рынке упаковки прослеживаются на современном рынке? По данным EAFA, доля упаковки на основе алюминия в мире постоянно увеличивается.
Из истории алюминия
Материал известный как алюминий используется в коммерческих целях в течение 100 лет. Ежегодно в мире производиться 26 миллионов тонн первичного алюминия. Без алюминия невозможно представить такие глобальные области как освоение космоса, передачу электричества, автомобилестроение, а также менее масштабные, но от этого не менее важные вещи - алюминиевые кастрюли и производство высококачественной упаковки. Фактически, чистый алюминий в производстве упаковки используется мало, в основном, используются различные сплавы (например, алюминиевая фольга), которые позволяют увеличить прочность при одновременном утончении упаковочного материала.
Основные рынки алюминиевой фольги
Производство алюминиевой фольги в Европе в 2004 году составило 831500 тонн (EAFA). Среднегодовой рост отрасли за последние семь лет составил 3, 6%. Приблизительно 75% алюминия используется для производства упаковки и фольги, и 25% - в производстве (тепловая изоляция для зданий, трубы и кабели, аэрокосмическая и электронная промышленность).
Производство алюминиевой фольги
Алюминиевая фольга – это очень тонкий лист алюминия. Его толщина составляет до 0, 2 мм (200нм). Ширина фольги будет зависеть от ее назначения: гибкая упаковка, коробки из фольги, фольга для крышек, хозяйственная фольга, фольга для теплообменника, ламинаты для теплоизолирующих материалов и т.д. Важно, что к моменту окончанию процесса производства, благодаря высокотемпературному отжигу, алюминиевая фольга становится стерильной. Именно поэтому она безопасна в использовании с продуктами питания. Кроме того, алюминиевая фольга может нагреваться до высоких температур, не деформируясь и не плавясь – а это идеальное условие для процессов запайки.
Алюминиевая фольга толщиной 0, 006 мм (наиболее тонкая), которая обычно используется в упаковочном ламинате, может эффективно сохранять скоропортящиеся продукты питания без использования заморозки в течение нескольких месяцев. Для множества товаров алюминиевая фольга обеспечивает абсолютные барьерные свойства к кислороду и влаге, к проникновению бактерий и воздействию температур. Можно отметить, что алюминиевая фольга имеет высокую тепловую проводимость, обладает хорошей гибкостью (то есть, легко приобретает необходимую форму, например, при производстве картона глубокой вытяжки или тиснении поверхности упаковки).
Информация о работе Комбинированные материалы: области применения и способы изготовления