Автор работы: Пользователь скрыл имя, 22 Апреля 2014 в 22:25, лекция
Главное, что нужно для жизни, – это энергия. Только энергия, получаемая из окружающей среды, позволяет живым системам противостоять росту энтропии и стремлению природы привести все в состояние равновесия, наступление которого предсказывает второй закон термодинамики. Основной внешний источник энергии Земли – солнечное излучение. Каждый год Земля получает от Солнца 6•1024 Дж, т.е. около 1000 Дж в секунду на 1 м2 поверхности. Чуть больше половины этой энергии поглощается, остальная отражается атмосферой и поверхностью (рис. 1).
Выделяющиеся электроны поступают во внешнюю цепь, что и создает электрический ток.
Твердооксидные элементы работают при температуре от 600 до 1000 °C – это самая высокая температура среди всех химических источников тока. Их КПД также один из самых высоких – около 60 %. Кроме того, для твердооксидных элементов не требуются дорогостоящие катализаторы, а требования к чистоте реагирующих газов весьма скромны. Все это делает твердооксидные топливные элементы основным кандидатом на роль источников тока во многих отраслях промышленности.
Каким же образом нанохимия способствует развитию водородной энергетики? Одно из приложений мы только что рассмотрели – это синтез наноструктурированных материалов для ионопроводящих мембран. Другое, родственное, – связано с нанесением катализаторов на поверхность электродов. В щелочных и кислотных топливных элементах в качестве катализатора окисления и восстановления используется дорогостоящая платина. Для создания экономически выгодных источников количество платины в них необходимо уменьшить по сравнению с существующим минимум в 4 раза (при сохранении общей каталитической активности). Для этого можно просто уменьшить размеры частиц катализатора до нанометровых, что позволит увеличить удельную поверхность катализатора. Другой, более красивый, способ состоит в том, чтобы готовить частицы катализатора не только заданного размера, но и требуемой формы, которая обеспечит наибольшее число реакционных центров на единицу поверхности. Все эти задачи решаются методами нанохимии и могут быть доведены до уровня технологий. И, наконец, для экономии катализатора можно использовать добавки более дешевых металлов, например никеля.
Наноструктурированные материалы используют и для производства электродов. Так, углеродные нанотрубки могут выполнять роль электродов в миниатюрных источниках тока. Создавая трубки специальной формы, можно резко увеличить не только проницаемость электродов для газов, но и активность нанесенного на трубки катализатора. Управление структурой и свойствами системы «электрод–катализатор» на нанометровом уровне – это основа будущих технологий водородной энергетики.
Наноматериалы для хранения водорода
Еще одна важная проблема, в решение которой нанохимия может внести существенный вклад, – это компактное и безопасное аккумулирование и хранение водорода для использования в топливных элементах. Идеальное устройство для хранения водорода должно содержать большое количество водорода в небольшом объеме и легко отдавать его по мере необходимости. Было предложено несколько принципиально разных подходов к хранению водорода, один из которых основан на использовании углеродных материалов, в частности нанотрубок. В «Водородной программе» Министерства энергетики США (1992) был установлен следующий критерий: для создания эффективного топливного элемента необходимо добиться аккумулирующей способности углерода 63 кг H2/м3 носителя (6,5 % мас. H2). С тех пор началась гонка за процентами водорода.
Все способы хранения водорода можно разбить на три больших класса: физические, физико-химические (адсорбционные) и химические [3]. У каждого из них есть свои достоинства, недостатки и область применимости. Самые традиционные – физические методы. Газообразный водород хранят в баллонах емкостью от нескольких литров до нескольких кубометров под давлением 35 атм, жидкий водород – в специальных криогенных резервуарах при низкой температуре. Основные преимущества баллонного хранения – простота и отсутствие энергозатрат для получения газа; недостатки – низкая объемная плотность и возможность утечек.
Среди материалов, способных адсорбировать водород, особое внимание привлекают углеродные материалы. Уже давно известно, что активированный уголь низкой плотности способен поглощать до 7–8% (мас.) водорода при давлении 4 МПа и температуре 65–75 К. В последнее десятилетие внимание ученых приковано к углеродным наноматериалам – нанотрубкам и фуллеренам, с которыми связаны атомы переходных металлов. Эти материалы относительно дешевле и легче возобновляемы, чем другие, кроме того, они имеют небольшую плотность. Главное преимущество углеродных нанотрубок – возможность хранить водород при низком давлении. Они способны адсорбировать значительное количество водорода – особенно перспективны в этом отношении двустенные трубки. Повысить адсорбционную емкость углеродных материалов можно в результате добавления металлов – катализаторов диссоциации водорода, среди которых одним из лучших является палладий.
Один из механизмов поглощения водорода нанотрубками – хемосорбция, т.е. адсорбция водорода H2 на поверхности трубки с последующей диссоциацией и образованием химических связей C–H. Полное насыщение водородом всех атомов углерода позволит достичь массовой доли связанного водорода 7,7 %. Правда, хемосорбция не очень удобна для хранения водорода, поскольку извлечь связанный водород трудно: связи C–H полностью разрываются лишь при 600 °С. Гораздо более приемлемым механизмом для связывания является обратимая физическая адсорбция молекулярного водорода за счет вандерваальсова взаимодействия. Кроме того, даже несвязанный физически или химически водород может заполнять полости внутри нанотрубки или между стенками многостенных трубок. Расчеты показывают, что при диаметре трубки 3 нм массовая доля водорода внутри трубки может достигать 15 %. Однако пока работа с углеродными наноматериалами не вышла за пределы лабораторий, и промышленного применения в хранении водорода они не нашли.
Среди материалов, химически связывающих водород, самыми многообещающими считаются легкие и активные металлы, такие, как магний или кальций. Магний образует с водородом ионный гидрид, который содержит 7,6 % (мас.) водорода. Правда, реакция между обычным металлическим магнием и газообразным водородом протекает слишком медленно. Для ее ускорения магний применяют в виде микро- и наночастиц или используют сплавы, например Mg2Ni или Mg2Cu.
Более перспективный подход основан на создании композитных материалов, объединяющих достоинства своих компонентов и лишенных их недостатков. Так, мы уже упоминали (см. лекцию № 4) новый композитный материал на основе фуллеренсодержащей сажи и гидрида магния, который способен обратимо поглощать 65 г водорода на 1 л сорбента. Скорость и температуру реакций поглощения и выделения водорода композитными материалами можно регулировать с помощью каталитических добавок и формирования наноструктурированных материалов. Поэтому гидриды легких металлов остаются одними из самых перспективных объектов для создания технологий хранения водорода.
Исследования различных аспектов водородной энергетики интенсивно ведутся во многих научных лабораториях, и пока трудно предсказать, какие из них выйдут на уровень технологий. В одном можно быть твердо уверенными – без нанохимии эти технологии не обойдутся. В то же время не следует ждать от нанохимии кардинальных прорывов и решений в области энергетики, это – всего лишь один из разделов химии, грамотное применение которого способно заметно улучшить количественные характеристики традиционных материалов и создать новые материалы, обладающие необходимыми свойствами.
Статья подготовлена при поддержке компании «Почтов.Ру». Если Вы решили приобрести качественный и надежный почтовый ящик для вашего дома, то оптимальным решением станет обратиться в компанию «Почтов.Ру». Перейдя по ссылке: «почтовые ящики в Москве», вы сможете, не потратив много времени, заказать почтовый ящик с доставкой на дом. В компании «Почтов.Ру» работают только высококвалифицированные специалисты с огромным опытом работы с клиентами.
Вопросы
1. Какую долю поглощенной световой энергии Солнца использует человечество (см. рис. 1)?
2. Почему в реакции сгорания метана изменения энтальпии и энергии Гиббса почти одинаковы?
3. Каковы достоинства и недостатки водорода как источника энергии?
4. Перечислите основные задачи, которые необходимо решить для развития водородной энергетики.
5. Почему на Земле нет молекулярного водорода в свободном состоянии? Объясните этот факт, исходя из физических и химических свойств водорода.
6. Перечислите важнейшие методы получения водорода. Попытайтесь оценить экологические последствия их применения.
7. Какая часть водорода при паровой конверсии метана выделяется из воды, а какая – из метана?
8. Какие типы водородно-кислородных топливных элементов вы знаете? Чем они отличаются друг от друга и что у них есть общего?
9. Напишите уравнения электродных полуреакций, протекающих в карбонатном топливном элементе.
10. Рассчитайте массу водорода в баллоне объемом 100 л, находящемся при комнатной температуре.
Л и т е р а т у р а
1. Балашев К.П. Фотокаталитическое преобразование солнечной энергии. Соросовский образоват. журн., 1998, № 8, с. 58–64.
2. Тарасов Б.П., Лотоцкий М.В. Водородная энергетика: прошлое, настоящее, виды на будущее. Рос. хим. журн., 2006, т. 50, № 6, с. 5–18.
3. Тарасов Б.П., Лотоцкий М.В., Яртысь В.А. Проблема хранения водорода и перспективы использования гидридов для аккумулирования водорода. Рос. хим. журн., 2006, т. 50, № 6, с. 34–48.