Переработка нефти

Автор работы: Пользователь скрыл имя, 31 Января 2013 в 08:00, реферат

Краткое описание

Сырая нефть представляет собой маслянистую жидкость от светло-коричневого до чёрного цвета, иногда буро-зелёного, в зависимости от месторождения. У разных нефтей различен не только цвет, но и запах, вязкость. Плотность нефти изменяется в пределах 700…900 кг/м3.
До 99 % в нефтях содержатся углеводороды разнообразного строения: парафиновые, циклопарафиновые (нафтеновые), ароматические. Низшие газообразные парафины сопутствуют нефти (попутный нефтяной газ), частично растворены в ней. В жидких углеводородах растворены также высшие твёрдые углеводороды.

Вложенные файлы: 1 файл

Переработка нефти.docx

— 139.99 Кб (Скачать файл)

Термический крекинг проходит при температура 470...5400 С и давлении 2...5 МПа. Вместе с расщеплением углеводородов при термическом крекинге протекают процессы синтеза и в результате создаются высокомолекулярные соединения. А также появляются отсутствующие в природной нефти химически неустойчивые непредельные углеводороды. Эти два фактора являются основным недостатком термического крекинга и причиной замены его другими процессами переработки нефти.

К таким  процессам относится каталитический крекинг, который протекает при тех же температурах, что и термический крекинг, но при давлении близком к атмосферному и в присутствии катализатора. В качестве катализатора наибольшее распространение получили твёрдые алюмосиликатные катализаторы, в состав которых входят окись кремния и окись алюминия. Основной реакцией каталитического крекинга так же является расщепление сложных и больших молекул на более лёгкие с меньшим числом атомов углерода. Скорость расщепления значительно выше. Схема установки каталитического крегинга представлена на рис. 1.

В условиях каталитического крекинга большое  значения имеют вторичные превращения  образующихся углеводородов, например, атомы водорода отщепляются с образованием ароматических углеводородов - реакция ароматизации; водород, выделяющийся в процессе ароматизации может вступать в реакцию с углеводородами олефинового ряда с насыщением двойных связей - реакция гидрогенизации; углеводороды с прямой цепочкой углеродных атомов могут изменять взаимное расположение атомов внутри молекул без изменения общего числа атомов - реакция изомеризации.

 

 

Регенератор


Реактор

Трубчатая

печь

Пневматические

подъёмники

катализатора

Ректификационная 

колонна

Сырьё

Бензин

Лёгкий

каталитич.

газойль

Тяжёлый

каталитич.

газойль


 

 

 

 

 

 

Рис. 1. Схема  установки каталитического крекинга с подвижными шариками

 

Каталитический  крекинг осуществляют по различным  схемам: с неподвижным слоем катализатора, подвижным сферическим катализатором  и с пылевидным или микросферическим катализатором.

Гидрокрекинг (деструктивная гидрогенизация) – разновидность каталитического крекинга, проводимого в атмосфере водорода при давлении 20...30 МПа и температуре 470...5000 С. В этом процессе образующиеся непредельные углеводороды гидрируются и превращаются в предельные. Кроме того, имеющиеся в сырье сернистые и кислородные соединения, расщепляясь, реагируют с водородом с образованием сероводорода и воды. Сероводород отмывается слабощелочной водой. В результате можно получать высококачественное топливо из нефтяных остатков, углеводородных смол и др. веществ.

В промышленных условиях используют и некоторые  другие термические процессы переработки. Например, при нагревании нефтяных остатков до 5500 С при атмосферном давлении происходит образование кокса и образуются жидкие углеводороды, которые можно использовать в качестве топлив. Далее, нагревание нефти до температуры 670...800 С0 (пиролиз) ведёт к значительному образованию газообразных углеводородов (этилен, пропилен и др.), из которых путём нефтехимического синтеза получают полиэтилен, полипропилен и т.д. В процесс пиролиза получают и жидкие углеводороды в основном ароматические.

Все процессы вторичной переработки  нефти вместе с улучшением качества бензиновых фракций дают и увеличение выхода бензина.

Однако  высокие требования к качеству бензина  заставляют использовать специальные  процессы, не дающие выхода бензина  из нефти. В таких процессах сырье  бензин и готовая продукция также  бензин, но с лучшими эксплуатационными  качествами.

К таким  процессам относится риформинг.

Термический риформинг не нашёл широкого применения, т.к. при этом не удаётся резко улучшить эксплуатационные свойства бензина.

Наиболее  перспективным является каталитический риформинг. Сущность его заключается в ароматизации бензиновых фракций в результате преобразования нафтеновых и парафиновых углеводородов в ароматические. Нафтеновые углеводороды теряют атом водорода и превращаются в ароматические (реакция ароматизации), парафиновые - в результате реакции изомеризации (циклизации) также образуют ароматические углеводороды, отщепляя водород. При этом также тяжелые углеводороды расщепляются на более мелкие, образующиеся непредельные углеводороды гидруются.

Основным  катализатором является алюмоплатина – платины 0,1...1,0 %. Этот катализатор позволяет осуществлять риформирование при температуре 460...5100 С и давлении 4 МПа без регенерации в течение нескольких месяцев. Процесс называется - платформинг. Сырьё для платформинга обессеривают, т.к. платиновый катализатор «отравляется» сернистыми соединениями, содержащимися в бензинах прямой перегонки. Обессеривание производят гидроочисткой, используя водород, выделенный при риформировании бензина. Этот процесс выгоден и тем, что обеспечивает водородом процессы гидроочистки топлив и масел.

Сырьё (бензиновая фракция прямой перегонки) нагревается  в теплообменниках и нагревательной печи 1 до 380...4200 С и поступает в реактор, где под давлением 3,5 МПа и при воздействии алюмокобальтомолибденового катализатора подвергается гидроочистке. Очищенное сырье после освобождения от сероводорода, углеводородных газов и воды нагревается в печи 1 до 500...5200 С и поступает в реакторы, где под давлением свыше 4,0 МПа происходит его реформирование. Полученный катализат после отделения водосодержащего газа и стабилизации может применяться для получения товарных бензинов. Режимы проведения риформинга, а также состав и свойства катализатора различаются. При проведении процесса в мягких условиях получают бензин с меньшей детонационной стойкостью, чем при жестком режиме платформинга.

В промышленных условиях сырье для изомеризации служат легкие бензиновые фракции прямой перегонки нефти, в составе которых  преобладают углеводороды с пятью-шестью атомами углерода в молекуле нормального  строения. Изомеризацию проводят в  присутствии хлористого алюминия, платины, палладия и т.д. Продукт является высококачественным компонентом товарных бензинов.

В процессе переработки нефти всегда образуются углеводородные газы, которые стараются  максимально использовать, например, перерабатывая в жидкие топлива  и их компоненты.

Для этого чаще всего применяют процесс  алкилирования, который сводится к присоединению олефинового углеводорода к парафиновому или ароматическому с образованием насыщенной молекулы более высокого молекулярного веса. В результате получают широкую бензиновую фракцию - алкилат (алкилирование изобутана в основном бутиленами), которая является высококачественным компонентом товарных бензинов. Катализатором является серная кислота и фтористый водород (при алкилировании парафиновых углеводородов).

Кроме алкилирования, при переработке газов используют реакцию полимеризации.

Полимеризацией  называют химическую реакцию соединения двух и большего числа одинаковых молекул в одну более крупную. При этом отщепления каких-либо атомов от молекул, вступающих в реакцию, не происходит.

В этих реакциях способны участвовать лишь непредельные углеводороды, поэтому  сырье для полимеризации служат газы, богатые олефиновыми углеводородами. Наиболее распространенный катализатор - фосфорная кислота.

На  рис. 2 показаны схема получения нефтепродуктов.

Все продукты переработки нефти, прежде чем пойти  на приготовление товарных топлив и  масел, проходят специальную очистку.

 

Очистка полуфабрикатов топлив и масел

 

Для удаления примесей полуфабрикаты топлив и  масел подвергают очистке. При этом выбор метода очистки зависит  от исходного качества очищаемого продукта и от требований к эксплуатационным свойствам готовых товарных продуктов, которые необходимо получить. Глубина  и способ очистки являются важным условием обеспечения высоких эксплуатационных качеств топливо-смазочных материалов.

Щелочная очистка (очистка натриевой щелочью). Применяется для удаления из нефтяных дистиллятов (рис. 3) кислородных соединений (нефтяных кислот, фенолов), сернистых соединений (сероводорода, меркаптанов, серы), и для нейтрализации серной кислоты и продуктов её взаимодействия с углеводородами (сульфокислот, эфиров серной кислоты) остающихся в нефтепродукте после его сернокислотной очистки.

 

 

 

НЕФТЬ

Прямая перегонка

(атмосферная)

Прямая перегонка

(вакуумная)

Бензиновые

фракции

Керосиновые

фракции

Газойлевые

фракции

Мазут

Соляровые

фракции

Масляные

фракции

Гудрон

 

Риформинг

Изомеризация

Термический

крекинг

Каталитический

крекинг

Гидрокрекинг

Бензин

Реактивные

топлива

Дизельные

топлива

Моторные

масла

Трансмиссионные

масла


 

 

 

 

 

 

 

 

 

 

 

Рис. 2. Схема получения топлив и масел из нефти

 

 RCOOH + NaOH RCOONa + H2O


нафтеновые соли нафтеновых

кислоты кислот


ROH + NaOH RONa + H2O

Фенолы феноляты

 H2S + 2NaOH Na2S + 2H2O


сероводород сернистый  натрий


RSH + NaOH RSNa + H2O

меркаптаны меркаптиды

Рис. 3. Химические реакции при щелочной очистке нефтяных дистиллятов

Образующиеся  вещества растворяются в воде и удаляются  из очищенного продукта вместе с водным раствором щелочи. Кроме того, можно произвести водную промывку продукта. Очистка щелочью используется при производстве бензинов, дизельных топлив и некоторых видов масел.

Очистка серной кислотой. Применяется для удаления непредельных углеводородов, асфальто-смолистых веществ, азотистых и сернистых соединений, нафтеновых кислот. Очистке 96...98 % раствором серной кислоты подвергают масла. Топлива не обрабатывают. Различают кислотно-щелочную и кислотно-контактную очистки. При кислотно-щелочной очистке после реакции с кислотой полуфабрикат нейтрализуют натриевой щелочью с промывкой водой и просушиванием паром. Осадок в виде смолистой массы (кислого гудрона) удаляется. Кислотно-контактная очистка заключается в последовательной обработке полуфабриката серной кислотой и отбеливающей землей.

Для повышения эффективности применяют  обработку нефтепродукта в пропановом растворе. Пропан уменьшает вязкость нефтепродуктов и растворимость в них смолисто-асфальтовых веществ, что увеличивает эффективность очистки. После обработки кислотой улучшаются вязкостно-температурные свойства, уменьшается коксуемость нефтепродуктов.

Селективная очистка (очистка при помощи растворителей) основана на различной растворяющей способности некоторых веществ в отношении углеводородов различного строения и неуглеводородных примесей. Применяется для очистки масел. Удаляются асфальто-смолистые соединения, полициклические углеводороды, часть сернистых соединений, непредельные углеводороды и т.д.

Эффективность такой очистки зависит от качества растворителя. Растворитель должен как  можно полнее растворять в себе нежелательные  компоненты и как можно меньше затрагивать полезные углеводороды.

После селективной  очистки (фенолом, фурфуролом, крезолом и др.) получают рафинат (очищенное масло) и экстракт (растворитель с извлеченными из масла веществами). После удаления растворителя экстракт идет в качестве добавки в трансмиссионные масла, а рафинат - на приготовление масел.

При селективной очистке улучшаются вязкостно-температурные свойства, уменьшается плотность и коксуемость, понижается склонность к образованию  отложений в двигателе.

Депарафинизация. Применяется для удаления углеводородов с высокими температурами застывания, в основном парафинового ряда, так как последние при охлаждении переходят в кристаллическое состояние. Депарафинизации подвергают дизельные топлива и масла.

Один  из главных методов депарафинизации это вымораживание, заключающийся в охлаждении полуфабриката до температуры застывания, после чего кристаллы отделяются на фильтрах. Недостатком этого метода является замораживание нефтепродукта до температуры значительно ниже температуры застывания, что связано с технологическими трудностями.

Этого недостатка лишен способ депарафинизации с растворителем, в качестве которого используют жидкий пропан. Полуфабрикат смешивают с растворителем,  постепенно охлаждают примерно до 300 С и затем твёрдые углеводороды отфильтровывают от раствора, а растворитель отгоняют от нефтепродукта.

Распространен метод депарафинизации карбамидом без применения холода. Карбамид способен создавать комплексные соединения с углеводородами парафинового ряда. После чего эти комплексы отделяют от остальных углеводородов, разлагают и карбамид регенерируют.

Гидроочистка. Применяется для удаления сернистых, азотистых и кислородных соединений путём восстановления этих соединений водородом при повышенных температурах и давлении в присутствии катализатора в газообразные продукты - сероводород, аммиак – и воду, которые легко удаляются.

Гидроочистке  подвергают дизельные топлива и  моторные масла перед платформингом для обессеривания.

Адсорбционная очистка (контактная очистка, очистка отбеливающими  землями). Некоторые высокопористые вещества (адсорбенты) способны удерживать на поверхности нежелательные примеси, содержащиеся в нефтепродуктах. Эта очистка распространена при производстве масел и дизельных топлив. При этом удаляют смолы, нафтеновые  кислоты, кислородосодержащие соединения, сульфокислоты, остатки минеральной кислоты и селективного растворителя. В качестве адсорбентов используют природные глины, силикагель, синтетические алюмокислоты, активированную окись алюминия.

Информация о работе Переработка нефти