Полимербетоны. Композиционные материалы

Автор работы: Пользователь скрыл имя, 26 Мая 2013 в 11:42, реферат

Краткое описание

При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы.

Содержание

Типы композиционных материалов.
2. Классификация композиционных материалов.
2.1. Волокнистые композиционные материалы.
2.2. Дисперсно-упрочненные композиционные материалы.
2.3. Карбоволокниты.
2.4. Карбоволокниты с углеродной матрицей.
2.5. Бороволокниты.
2.6. Органоволокниты.
2.7. Экономическая эффективность применения композиционных материалов.
3. Полимербетоны.
3.1. Составляющие полимербетонов.
3.2. Особенности технологии полимербетонов.
3.3. Свойства полимербетонов.
3.4. Область применения полимербетонов.
4. Технико-экономическая эффективность применения полимербетонов в строительстве.
Список литературы.

Вложенные файлы: 1 файл

рЕФЕРАТ2.docx

— 51.98 Кб (Скачать файл)

 

2.3 Карбоволокниты

Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей в виде углеродных волокон (карбоволокон).

Высокая энергия связи  С-С углеродных волокон позволяет  им сохранить прочность при очень  высоких температурах (в нейтральной  и восстановительной средах до 2200 °С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержанию карбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6–2,5 раза. Применяется вискеризация нитевидных кристаллов TiO, AlN и SiN, что дает увеличение межслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.

Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Эпоксифенольные карбоволокниты КМУ-1 л, упрочненные углеродной лентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.

Карбоволокниты КМУ-3 и КМУ-2 л получают на эпоксианилиноформальдегидном связующем, их можно эксплуатировать при температуре до 100 °С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2 л на основе полиимидного связующего можно применять при температуре до 300 °С.

Карбоволокниты отличаются высоким статистическим и динамическим сопротивлением усталости, сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически

стойкие. После воздействия  на воздухе рентгеновского излучения  и Е почти не изменяются.

Теплопроводность углепластиков  в 1,5–2 раза выше, чем теплопроводность стеклопластиков. Они имеют следующие  электрические свойства: = 0,0024ч0,0034 Ом·см (вдоль волокон);? = 10 и tg = 0,001 (при частоте тока 10 Гц).

Карбостекловолокниты содержат наряду с угольными стеклянные волокна, что удешевляет материал.

 

2.4 Карбоволокниты с углеродной матрицей

Коксованные материалы получают из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800–1500 °С образуются карбонизированные, при 2500–3000 °С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (температуре 1100 °С и остаточном давлении 2660 Па) метан разлагается и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет высокую прочность  сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениям прочности и ударной вязкости в 5–10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200 °С, на воздухе окисляется при 450 °С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35–0,45), а износ мал (0,7–1 мкм на тормажение).

2.5 Бороволокниты

Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя – борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

Помимо непрерывного борного  волокна применяют комплексные  боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, предающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.

В качестве матриц для получения  боровлокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать при температуре не свыше 100 °С; КМБ-2к работоспособен при 300 °С.

Бороволокниты обладают высокими сопротивлениями усталости, они стойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

Поскольку борные волокна  являются полупроводниками, то бороволокниты обладают повышенной теплопроводностью и электропроводимостью. Для бороволокнитов прочность при сжатии в 2–2,5 раза больше, чем для карбоволокнитов.

Физико-механические свойства бороволокнитов приведены предыдущей таблицы.

 

 

2.6 Органоволокниты

Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной прочностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических волокон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.

К органоволокнитах значения модуля упругости и температурных коэффициентов линейного расширения упрочнителя и связующего близки. Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористось не превышает 1–3% (в других материалах 10–20%). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, действии ударных и циклических нагрузок. Ударная вязкость высокая (400–700 кДж/м?). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнитов может длительно работать при температуре 100–150 °С, а на основе полиимидного связующего и полиоксадиазольных волокон – при температуре 200–300 °С.

В комбинированных материалах наряду с синтетическими волокнами  применяют минеральные (стеклянные, карбоволокна и бороволокна). Такие материалы обладают большей прочностью и жесткостью.

 

 

2.7 Экономическая  эффективность применения композиционных  материалов

Области применения композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т.д.) и двигателей (лопаток компрессора и турбины и т.д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т.д., в горной промышленности (буровой инструмент, детали комбайнов и т.д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т.д.) и в других областях народного хозяйства.

Применение композиционных материалов обеспечивает новый качественный скачек в увеличении мощности двигателей, энергетических и транспортных установок, уменьшении массы машин и приборов.

Технология получения  полуфабрикатов и изделий из композиционных материалов достаточно хорошо отработана.

Композиционные материалы  с неметаллической матрицей, а  именно полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и другом.

Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры.

 

 

Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрессоров, лопасти винтов и трансмиссионные валы вертолетов и т.д.).

Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости для реактивов, покрытия корпусов судов и другое.

 

  1. Полимербетоны.

Полимербетон — это  бетон, вяжущим веществом в котором  служат синтетические полимеры. Полимербетон, существенно отличаясь по своим  свойствам от обычных бетонов, является, по существу, новым строительным материалом. Полимербетоны целесообразно применять  в тех случаях, когда требуются  особо высокая химическая стойкость, повышенная прочность на удар, износостойкость, морозостойкость.

Хотя идея получения полимербетонов не нова (первый патент на полимербетон получен в 1906 г. Бакеландом), применять их в строительстве начали сравнительно недавно. Постоянное расширение областей применения полимербетонов объясняется как увеличением производства полимеров, так и накоплением сведений о свойствах полимербетонов.

    1. Составляющие полимербетонов.

Из полимеров для получения  полимербетонов используют главным  образом термореактивные, до отверждения  находящиеся в жидком состоянии. К ним относятся в первую очередь эпоксидные, полиэфирные и фурановые полимеры.

Эпоксидные полимеры — лучшие виды вяжущих веществ для полимербетона, однако широкому использованию этих полимеров препятствует их высокая стоимость. Эпоксидные полимеры отверждаются при обычных температурах, не выделяя побочных продуктов. Отвержденные полимеры обладают высокой прочностью как при сжатии, так и при растяжении, высокой ударной прочностью, относительно низкой деформативностью и хорошей стойкостью к истиранию и химической агрессии. Они надежно совмещаются практически со всеми строительными материалами. Для снижения хрупкости в эпоксидные полимеры вводят пластификаторы: внешние (например, диоктилфталат) или внутренние (отвердитель-пластификатор полисульфидный каучук-тиокол).|

Ненасыщенные  полиэфиры (полиэфирмалеинаты, полиэфиракрилаты) более доступны, но они не имеют столь высоких показателей по прочности, адгезии и истираемости, как эпоксидные. К тому же стойкость к воздействию воды и щелочей у них пониженная. Полиэфиры при отверждении дают большую усадку (до 9%).

Фурановые полимеры — одни из самых дешевых видов полимеров, широко применяемых для получения полимербетонов. Особенно распространен среди фурановых полимеров полимер на основе фурфуролацетонового мономера (ФА), отверждаемого сильными кислотами (процесс отверждения идет на холоде).

Фурановые полимеры отличаются высокой и универсальной химической стойкостью (за исключением действия органических растворителей и сильных  окислителей) и хорошей теплостойкостью (до 200°). Механические свойства фурановых  полимеров несколько ниже, чем  у эпоксидных и полиэфирных. Недостатком этих полимеров является выделение воды в качестве побочного продукта при отверждении.

В качестве вяжущего в полимербетонах можно применять также фенолоформальдегидные, мочевиноформальдегидные и другие полимеры.

Заполнители. В полимербетонах в отличие от обычных бетонов кроме крупного и мелкого заполнителя применяют еще тонкодисперсный (порошкообразный) наполнитель.

В случае применения только мелкого заполнителя (песка) материал называют полимерраствором. Использование такого набора заполнителей позволяет снизить расход полимера и одновременно уменьшить усадку, деформативность и некоторые другие нежелательные свойства бетона.|

Для того чтобы заполнитель  не ухудшал высокую химическую стойкость  связующего, применяют заполнители, стойкие в соответствующих средах. При выборе заполнителей также надо учитывать возможное их взаимодействие с компонентами вяжущего. Так, для полимербетона на мономере ФА нельзя применять карбонатные заполнители (отвердитель-кислота). Заполнители получают в основном измельчением химически стойких горных пород (андезит, базальт, кварцит, туф). Очень хорошими заполнителями являются графит, уголь и кокс.

Минеральные заполнители  имеют в 5—10 раз больший модуль упругости, чем полимерное связующее, что приводит к большим напряжениям  на границе полимер — заполнитель  и, как следствие, к понижению  прочности полимербетона. Для снижения этого нежелательного явления в  качестве тонкодисперсного наполнителя  можно использовать материалы с  близким к связующему модулем  упругости, например порошки химически стойких полимеров (суспензионный ПВХ и т. п.).

    1. Особенности технологии полимербетонов.

 Свойства полимербетона  во многом зависят от подбора  его состава. Основная цель  подбора состава полимербетона  — обеспечение минимального расхода  полимерного вяжущего при получении  требуемых физико-механических свойств  бетона (прочности, плотности, стойкости  и т. п.).

Информация о работе Полимербетоны. Композиционные материалы