Автор работы: Пользователь скрыл имя, 21 Апреля 2014 в 11:49, реферат
Производство полиуретанов (ПУ) представляет собой одну из наиболее динамично развивающихся отраслей промышленности. Такой интерес производителей ПУ прежде всего связан с возможностью получения разнообразных технически ценных материалов на их основе. Это монолитные эластомеры и пластики, вспененные материалы, волокна, клея, лаки, адгезивы и герметики. При этом на эластичные и жесткие пенополиуретаны (ППУ) приходится наибольший объем потребления, который составляет 75 % от всего выпуска [1].
Введение.
1. Утилизация и вторичная переработка отходов производства полиуретанов
1.1 Механическая переработка
1.2 Химическая переработка
2. Способ переработки полиуретановых отходов
3. Синтез полиуретанов: вторичные полиолы
Литература
Рис.3. Вторичная переработка панелей холодильников. Стадии: новый холодильник с улучшенной изоляцией: первичный пенополиуретан и вакуумные изоляционные панели; старый холодильник; отделение хлорфторуглерода и измельчение в крошку жесткого пенополиуретана; вакуумная упаковка прессованной крошки пенополиуретана; готовая вакуумная изолирующая панель.
Деполимеризация полиуретана на химические компоненты, известная как хемолиз, наиболее эффективна, когда исходные отходы полиуретана имеют известный и однородный химический состав. Химический тип полиуретановой продукции, изготовленной из переработанных мономеров, как правило, аналогичен исходным продуктам и обладает теми же эксплуатационными качествами. По данным PURRC, в результате хемолиза образуются полиолы, которые могут заменить до 90% полиолов в полужестких пенополиуретанах, при этом содержанием вторичного сырья в производимом пенополиуретане может доходить до 30%. Организация приводит аналогичные результаты для жестких пенополиуретанов.
Существуют следующие разновидности хемолиза:
гидролиз, в процессе которого отходы полиуретана вступают в реакцию с водой при нагревании под давлением и производят полиэфирполиолы и диамины (продукты гидролиза исходных диизоцианатов). Эти компоненты могут быть выделены, очищены и использованы повторно;
гликолиз, когда пенополиуретан вступает в реакцию с диолами при повышенной температуре (выше 200°C) в присутствии катализатора. В ходе процесса расщепляются полиуретановые макромолекулы и их многочисленные поперечные сшивки до получения полиолов невысокой молекулярной массы и других жидких продуктов. После очистки рециклат полиола может использоваться для изготовления различных продуктов, например, жесткого пенополиуретана, эластичного пенополиуретана, обувных подошв. Основные работы по гликолизу проводились в Европе. Гликолиз больше подходит для утилизации производственных отходов, чем отходов от использованной продукции и изделий;
аминолиз, в процессе которого пенополиуретан при нагревании под давлением вступает в реакцию с аминами, такими как дибутиламин, этаноламин, лактамы или аддукты лактамов. Аминолиз все еще находится на стадии исследования.
Рис.7. Процесс гликолиза: гликоль - катализатор - полиуретан/отходы - деаминирование - реактор - фильтр - рециклат полиола.
Страна |
Исходный продуктиз полиуретана |
Применение |
Австрия |
Пенорезины/Приборные панели |
Пенорезины/КОМПОНЕНТЫ ПРИБОРНЫХ ПАНЕЛЕЙ |
Франция |
Жесткий пенополиуретан |
Жесткий пенополиуретан |
Германия |
Продукт реактивного литьевое прессование |
Реактивное литьевое прессование/Цельная пленочная пена |
Германия |
Обувные подошвы |
Обувные подошвы |
Италия |
Обувные подошвы |
Жесткий пенополиуретан |
Италия |
Обувные подошвы |
Обувные подошвы |
Англия |
Эластичный пенопласт |
Эластичный и жесткий пенополиуретан |
Также в категорию химической переработки включается пиролиз, при котором смеси полиуретана и других отходов пластмассы нагреваются без доступа кислорода. Конечным продуктом процесса являются различные газы и масла, которые можно использовать как топливо и химическое сырье. Затем проводится гидрогенизация, при которой продукты пиролиза вступают в реакцию с водородом для производства более чистых газов и масел. Иногда гидрогенизация оказывается невозможной по экономическим причинам, например, из-за высокой стоимости водорода. Брикетированные отходы полиуретана могут быть использованы в качестве восстановителя железной руды - это еще один процесс, где применяются химические свойства полиуретана.
Технологии переработки отходов полиуретана разрабатываются уже более десяти лет, но в последнее время вопрос вторичной переработки и утилизации встал особенно остро. Среди причин актуальности этой проблемы закрытие свалок, повышение стоимости вывоза отходов, правительственные постановления, устанавливающие квоты на переработанные пластмассы. Основными технологиями вторичной переработки полиуретанов являются регенерация энергии, механическая переработка и химическая переработка. Целесообразность выбора каждого метода зависит от перерабатываемого продукта, места расположения, стоимости энергоносителей, предполагаемых рынков конечного применения. Большая часть перерабатываемых на сегодня полиуретанов является промышленными отходами. Вторичная переработка отходов после использования продуктов и изделий до некоторой степени затрудняется отсутствием инфраструктуры сбора, сортировки и обработки, хотя различные отраслевые группы своими силами пытаются решить эти проблемы.
В настоящее время производственные отходы полиуретанов вывозятся на свалки и сжигаются, причем сжигание сопровождается вторичным загрязнением атмосферы вследствие образования высокотоксичных цианистых соединений и окиси углерода.
Между тем вторичные полиуретаны при их рациональном использовании могут служить источником расширения сырьевой базы, экономии денежных и трудовых ресурсов, так как способны снизить потребность в первичных материалах.
Поскольку уничтожение полиуретановых отходов приводит к безвозвратным потерям ценных сырьевых ресурсов и возникновению экологических проблем, разработка способов их переработки приобретает особую актуальность, если к тому же исследования ориентированы на рециклизацию полимера.
Возможности вторичной переработки полиуретанов обусловлены особенностями структуры и физико-механических свойств сырья.
Исходными компонентами для их получения являются чаще всего олигомерные полиолы (простые или сложные полиэфиры), низкомолекулярные полиолы и полиизоцианаты. В зависимости от функциональности полиэфира и изоцианата получаются линейные или сетчатые материалы; в соответствии с целевым назначением они могут быть монолитными или пористыми.
Используемые для различных целей полиуретаны характеризуются огромным многообразием физико-химических, физико-механических, эксплуатационных свойств: от эластичных до очень жестких, от высокопрочных монолитов до хрупких "твердых пен". Поэтому в каждом конкретном случае необходим специфический подход к их переработке.
Полиуретаны, используемые для производства обувных подошв, относятся к типу линейных мелкопористых материалов.
Описанные в литературе способы переработки вторичного полиуретанового сырья либо неработоспособны, либо нерентабельны.
В частности, известен способ переработки полиуретановых отходов путем их механического измельчения в крошку требуемой дисперсности с дальнейшей грануляцией последней. Гранулы используют в качестве наполнителя полимерных композиций типа пресс-порошков. (пат. ФРГ N 2540934; авт. св. Болгарии N 40412, 87).
Этот способ находит применение для утилизации хрупких твердых пенополиуретанов.
Диспергирование же обувных отходов представляет большую сложность ввиду их пластичности при повышенных температурах, развивающихся в шнековых экструдерах или дробильных устройствах, применяемых для измельчения: в процессе работы аппарата происходит оплавление полимера на его рабочих органах и диспергирование прекращается.
Известен способ переработки полиуретановых отходов путем термической обработки полиуретана при интенсивном перемешивании полимерной массы в смесителе.
Этот способ используется при переработке непористых полиуретанов с малой плотностью сшивки, которые способны переходить в эластичное состояние, но не плавиться в диапазоне температур 150-200oC, а при комнатной температуре снова становится твердой и хрупкой массой, которая легко измельчается в мелкодисперсный порошок при приложении механического воздействия. В таком виде полимер смешивается с порошкообразным диизоцианатом и прессуется в блоки при повышенных температурах и давлениях (B. Meister, H. Schaper. Polyurethan-Recycling Losungen fur ein Problem. Kunststoffe, 80 (1990), 11).
Указанный способ отличается простотой и доступностью аппаратурного оформления. В качестве недостатков сами авторы отмечают снижение прочности и эластичности переработанного полиуретана по сравнению с уровнем тех же характеристик исходного материала приблизительно на 10% а также утрату ровной глянцевой поверхности из-за наличия неплавких частичек гранулята. Основным же препятствием к использованию рассматриваемого способа для переработки отходов обувного полиуретана является сложность их предварительного измельчения, о чем было сказано выше. Следует отметить, что измельчение должно быть очень тонким, так как иначе закапсюлированные в пористой структуре воздушные включения будут сжиматься при увеличении давления и стремиться к восстановлению прежнего объема при нормальных условиях, что не позволит получать монолитные, механически прочные блоки. Ликвидации пор могло бы способствовать увеличение температуры перед фазой прессования, однако предел текучести материала настолько близок к температуре макромолекулярной деструкции его, что на практике такой прием не может быть использован: образцы, полученные при жесткой термообработке (свыше 160oC) исходного сырья, имеют неудовлетворительную прочность.
Известен способ переработки полиуретановых отходов путем алкоголиза последних спиртами, то есть способ химической регенерации:
В ходе реакции образуются олигомерные гидроксилсодержащие соединения, которые можно добавлять в исходное сырье или отверждать с помощью диизоцианатов. Рассматриваемому способу переработки полиуретанов посвящено больше всего работ. (пат. ФРГ N 2546815, 75; пат. США N 4025559; пат. Японии N 53-18239, 78; Н.М. Колесников, С.В. Гюльмамедова, В.А. Федасов. Способ утилизации отвержденных отходов уретановых эластомеров. Каучук и резина, 1983, N 48, с.44-45).
Однако из-за сложности технологического оформления, отсутствия типового оборудования, необходимости добавления значительного количества свежего полиизоцианата, низких физико-механических параметров переработанного полиуретана, этот способ практического использования не получил.
Предложен способ превращения полиуретановых отходов в термопластичный относительно мелкодисперсный сыпучий гранулят с последующей переработкой его на обычных термопласт-аппаратах (экон. пат. ГДР N 262237, 88).
Способ заключается в следующем: отходы или бракованные изделия из полиуретанового эластомера растворяют в диметилформамиде при повышенном давлении и температуре 90oC, при этом соотношение диметилформамида к полиуретану составляет 4:
В раствор добавляют разбавитель (хлористый метилен, циклогексанон, ацетон, эфиры уксусной кислоты), в котором полиуретановые эластомеры сильно набухают, но не растворяются; при этом соотношение разбавителя к эластомеру составляет 15:
Из разбавленного раствора эластомер осаждают метанолом, или безводным этанолом, или петролейным эфиром при соотношении осадителя к эластомеру, равном (25-50): 1, затем отделяют твердую фракцию фильтрованием и высушивают. В результате получают мелкозернистый сыпучий продукт, в котором преобладают частицы одинакового размера, и перерабатывают его на обычных машинах для переработки пластмасс; переработанный материал имеет прочность 20-25 МПа, твердость по Шору 82, относительное удлинение 550-600%.
Использование больших количеств разбавителя, осадителя и растворителя (на 1 кг полимерного материала затрачивается от 90 до 140 кг органических жидкостей) и необходимость дальнейшего разделения их для возвращения в процесс повышает трудоемкость и затрудняет организацию промышленной переработки обувных отходов.
Учитывая, что проблема утилизации полиуретановых отходов год от года обостряется, создание экономичной, экологически безопасной, промышленно осуществимой технологии их переработки для получения широкого ассортимента новых изделий и материалов с высокими физико-механическими и эксплуатационными свойствами является задачей актуальной.
С этой целью авторами предлагается способ переработки полиуретановых отходов обувной промышленности, сущность которого заключается в том, что отходы или бракованные изделия пористого полиуретанового эластомера подвергают сначала естественной пластификации при комнатной температуре путем добавления в них органических соединений апротонного типа в соотношении, равном 1: (0,2-0,4), затем принудительной пластификации путем вальцевания при комнатной температуре, а прессование изделий из полученного полимерного полотна осуществляют при температуре 125-130oС, давлении 50-80 МПа в течение 12-15 мин.
В качестве органических соединений апротонного типа используют диметилформамид, диметилацетамид, диметилсульфоксид.
Предлагаемая технология обеспечивает более мягкие условия подготовки полиуретанового эластомера к прессованию, исключающие термическое воздействие, неизбежно приводящее к деструктивным последствиям и ухудшению физико-механических свойств конечного материала. Использование небольшого количества органического соединения способствует естественной пластификации, при которой достигается увеличение подвижности меж - и внутримолекулярных связей без их разрушения, а вальцевание создает условия для нужной ориентации фрагментов макромолекул и их оптимальную упаковку в объеме, что позволяет получать из бесформенных блоков монолитное гомогенное полотно, лишенное воздушных включений.
Присутствие в системе соединения апротонного типа обеспечивает восстановление прежних и образование новых водородных связей, упрочняющих полимерное полотно.
Процесс прессования изделий из полотна при рекомендуемых технологических параметрах также исключает вероятность термодеструкции полимера, гарантирует сохранение высоких значений физико-механических параметров, обеспечивает получение ровной, гладкой, блестящей поверхности деталей с отчетливым оттиском на ней требуемого рисунка.
Для реализации способа используют обычно применяемое в технологии получения эластомеров различной природы оборудование: любое перемещающее устройство; вальцы с гладкими валками; гидравлический пресс с обогреваемыми плитами.
полиуретан вторичная переработка полиол
Среди известных методов переработки ПУ отходов наиболее эффективным признан гликолиз, позволяющий получать вторичные полиолы.
Целью настоящего исследования явилось изучение химической структуры, физико-химических параметров продуктов гликолиза и синтез на их основе новых ПУ материалов.
Объектами гликолиза служили предварительно измельченные образцы:
- литьевого
монолитного ПУ торговой марки СКУ-ОМ
[2], получаемого взаимодействием полиэтиленбутиленгликольадипин