Сернистые соединения нефти

Автор работы: Пользователь скрыл имя, 01 Декабря 2013 в 21:21, реферат

Краткое описание

Сера — наиболее распространенный гетероэлемент в нефтях и нефтепродуктах. Содержание ее в нефти колеблется от сотых долей процента до 14 % (нефтепроявление Роузл Пойнт, США). В последнем случае почти все соединения нефти являются серосодержащими. Наиболее богаты серосодержащими соединениями нефти, приуроченные к карбонатным породам. Нефти терригенных (песчаных) отложений содержат в 2—3 раза меньше серосодержащих соединений, причем максимум их содержания наблюдается у нефтей, залегающих на глубине 1500—2000 м, т. е. в зоне главного нефтеобразования («нефтяное окно»).

Вложенные файлы: 1 файл

Сернистые соединения нефтей.docx

— 67.04 Кб (Скачать файл)

Сернистые соединения нефтей

Сера  — наиболее распространенный гетероэлемент в нефтях и нефтепродуктах. Содержание ее в нефти колеблется от сотых долей процента до 14 % (нефтепроявление Роузл Пойнт, США). В последнем случае почти все соединения нефти являются серосодержащими. Наиболее богаты серосодержащими соединениями нефти, приуроченные к карбонатным породам. Нефти терригенных (песчаных) отложений содержат в 2—3 раза меньше серосодержащих соединений, причем максимум их содержания наблюдается у нефтей, залегающих на глубине 1500—2000 м, т. е. в зоне главного нефтеобразования  («нефтяное окно»).

Как и  кислородсодержащие соединения нефти, серосодержащие неравномерно распределены по ее фракциям. Обычно их содержание увеличивается  с повышением температуры кипения. Сера так же присутствует в значительных количествах в дистиллятных фракциях. Например, в нефтях Волго-Уральской впадины и Западной Сибири до 60 % серы находится во фракциях, выкипающих до-450 °С. 

Серу  в связанном виде нефти содержат от 0,02 до 6% (мас.), она входит в состав от 0,5 до 60% углеводородов нефти.

По интервалу  кипения нефти сера распределяется неравномерно (рис.1): в легких фракциях 80-100 °С ее содержится много, во фракциях 150-220 °С ее количество обычно минимально и далее к концу кипения существенно нарастает.

 

Рис 1. Распределение серы (qS - содержание серы) по фракциям туймазинской(1) и арланской (2) нефтей

 

Сера  находится в нефтях в виде простого вещества, сероводорода, в органических соединениях и смолистых веществах.

Сера  как простое вещество содержится в нефтях в растворенном состоянии. При нагревании нефти (в процессе перегонки) сера частично реагирует с углеводородами (легче с ароматическими):

 

2RH + 2S → R-S-R + H2S.

 

Сероводород. Простейшим соединением является сероводород (H2S), который к серосодержащим соед нефти относить не принято, но который является важным как соединение, сопутствующее технологии переработки нефти

В природных  нефтях сероводород присутствует в небольших количествах [0,01-0,03% (мас.)] в растворенном состоянии. Основное его количество уходит с попутным газом, добываемым вместе с нефтью.

При переработке  сернистых нефтей за счет термокаталитических реакций деструкции или конверсии других групп серосодержащих ГАС образуется в больших количествах сероводород, который выделяют из газов и направляют на производство серы.

Сера  и сероводород вызывают коррозию металлов, кроме того, сероводород  очень токсичен.

Основная  масса серы входит в состав органических сернистых соединений и в состав смолисто-асфальтеновых веществ. В  нефтях найдены меркаптаны R—SH, сульфиды R—S—R, дисульфиды R — S—S—R, производные тиофена, тиофана и тиациклогексана. В настоящее время насчитывается свыше 200 различных сернистых соединений, найденных и идентифицированных в нефтях.

Тиолы (меркаптаны), содержащие от 1 до 9 атомов углерода (в общей сложности более 40), выделены из бензиновых фракций нефтей (в основном, алифатические). Следует отметить, что содержание меркаптановой серы в нефтях составляет 0,1 — 15% от общего содержания серы (хотя есть и исключения, где эта доля достигает 60-70%, например в марковской нефти и оренбургском газоконденсате). Меркаптаны в бензиновых фракциях нефтей преобладают над другими сернистыми соединениями. С повышением температуры кипения фракций их содержание быстро уменьшается.

Повышенным  содержанием меркаптанов во фракциях до 200°С отличается одна из новых и перспективных нефтей - тенгизская (общей серы 0,8%, меркаптановой 0,1%).

Одним из характерных для меркаптанов  свойств является их коррозионная активность, в связи с чем в таких массовых топливах, как авиационные керосины и дизельные топлива, содержание меркаптановой серы ограничивается (не более 0,001-0,005 и 0,01% (мас.) соответственно).

Их также  отличает очень сильный и неприятный запах, ощущаемый уже при концентрациях 1•10-7%. Это их свойство используется в газовых хозяйствах, где они  применяются в качестве одорантов (этилмеркаптан) с целью обнаружения утечки бытового газа.

Меркаптаны  в повышенных концентрациях токсичны, вызывают слезотечение, головокружение.

По своим  химическим свойствам меркаптаны напоминают спирты, но атом водорода в группе SH более подвижен, поэтому меркаптаны реагируют легко с основаниями и даже с оксидами металлов, в частности с оксидом ртути:

 

2R-SH + HgO → (RS)2Hg + Н2О (тиолят ртути- меркаптид)

 

Отсюда  их название — меркаптаны (mercurium captans — связывающий ртуть).

Кроме этого  тиолы извлекают из нефтяных фракций действием водных растворов моноэтаноламина; в аналитических целях возможно использование солей некоторых металлов (нитрат серебра, плюмбит натрия).

 

R-S – Н + NaОН → R-S - Na + Н2О

 

Меркаптаны, содержащиеся в бензинах, окислением воздухом в присутствии катализаторов (Сu2С12) (в мягких условиях: 25оС) превращаются в дисульфиды (облагораживание бензинов):

 

R-S –( Н +1/2 О2 + H-)S-R → R-S-S-R + Н2О

 

Окисление меркаптанов азотной кислотой приводит к сульфокислотам:

 

R-SH → R-SО2-OH.

При термическом  разложении меркаптана разрывается  связь С — S. Под действием водорода при повышенных давлениях и температурах в присутствии катализаторов происходит отщепление H2S (гидроочистка):

 

 

Сульфиды (тиоэфиры) наиболее распространены в бензиновых и в средних фракциях нефти, где они составляют 50-80% от суммы сернистых соединений. Сульфиды нефтей подразделяются на алифатические (диалкилсульфиды) и алициклические, содержащие атом серы в цикле (тиацикланы). Последние преобладают в средних фракциях нефти. Из бензиновых фракций нефтей выделено и идентифицировано более 50 индивидуальных диалкилсульфидов. Диалкилсульфиды - нейтральные вещества. Однако в присутствии сильных

В аналитических  целях для удаления сульфидов  из фракций нефти используют их способность  образовывать комплексы с различными акцепторами электронов: BF3, Hg(NO3)2, A1C13, Hg(OOCCH3)2, TiCl2, SnCl2, AgNO3  

 

 

Эти комплексы  можно разложить водным раствором  аммиака и выделить сульфиды.

Термическое разложение сульфидов приводит к  образованию сероводорода и углеводородов:

CH3-CH2-S-CH2-CH3

2СН2=СН2.

 

Дисульфиды  R-S-S— R' находятся в нефтях в небольшом количестве во фракциях до 300°С. На них приходится 7—15% всей серы. Восстановление дисульфидов водородом в момент выделения (Zn + уксусная кислота) приводит к образованию меркаптанов:

 

 

Тиацикланы. Это соединения, молекулы которых содержат пяти- и шестичленные циклы с атомом серы в цикле, причем пятичленные тиацикланы (тиофаны) преобладают над шестичленными (тиациклогексаны). Обычно тиацикланы содержат алкильные заместители и конденсированные нафтеновые и ароматические кольца.

Например:

 

 

алкилтиофан

 

Тиофены — это гетероциклические сернистые соединения, производные тиофена:

 

Так же как  и в случае тиофанов, молекулы тиофенов, найденных в нефтях, содержат алкильные группы и конденсированные нафтеновые и ароматические кольца:

 

 

алкилбензтиофен циклогексанобензтиофен

 

В нефтях найдено более 20 гетероциклических сернистых соединений — это, в основном, алкилпроизводные тиофана, а также в небольшом количестве алкилпроизводные тиофена и тиациклогексана.

В керосиновых  и масляных фракциях нефти содержатся сернистые соединения полициклического строения: производные бензтиофена, бензтиофана, дибенз-тиофена и других гетероциклических сернистых соединений, содержащих 3—5 ароматических и нафтеновых колец.

Присутствие сернистых соединений в нефтепродуктах и в сырье некоторых процессов  переработки нефти крайне нежелательно. Активные сернистые соединения (S, H2S, HSR) вызывают коррозию металлов. Сернистые соединения, находящиеся в топливах, при сгорании образуют диоксид серы, вызывающий коррозию двигателей. Даже ничтожные их примеси в сырье для платформинга вызывают отравление платинового катализатора. Удаление серы из нефтяных продуктов проводится с помощью гидроочистки, которая состоит в том, что нефтяной продукт подвергается действию водорода при 300-450°С и 1,7-7 МПа над катализаторами, состоящими из сульфидов и оксидов металлов переменной валентности. При этом сера, входящая в состав сернистых соединений, превращается в сероводород, который удаляется с газами:

 

По способности  к гидродесульфированию сернистые соединения можно расположить в следующий ряд:

дисульфиды > тиолы > сульфиды > тиофаны > тиофены

 

 

 

 

 

 

 

 

Таким образом, все серосодержащие соединения нефти уничтожаются гидрированием  до сероводорода, а между тем многие из них являются весьма ценными продуктами. Например, меркаптаны — регуляторы скорости полимеризации каучуков, а  также сырье для антиокислительных  присадок. Сульфиды служат компонентами при синтезе красителей, продукты их окисления—сульфоксиды, сульфоны и сульфокислоты — используют как растворители металлов и экстрагенты аренов. Кроме того, сульфиды и сульфоксиды — эффективные ингибиторы коррозии металлов, антиокислительные и противозадирные присадки к маслам, флотореагенты, поверхностно-активные вещества, инсектициды, гербициды и фунгициды. Производные тиофена применяют в синтезе лекарственных веществ, стимуляторов роста растений, производстве полимерных материалов, обладающих повышенными диэлектрическими свойствами, а также способных к флуоресценции отбеливателей и др. 

  1. Химия нефти и газа Проскурякова
  2. Гетероатомные соединения нефти Камьянов

Информация о работе Сернистые соединения нефти