Сложные эфиры

Автор работы: Пользователь скрыл имя, 12 Января 2014 в 01:38, реферат

Краткое описание

Среди функциональных производных кислот особое место занимают сложные эфиры — производные кислот, у которых кислотный водород заменён на алкильные (или вообще углеводородные) радикалы.
Сложные эфиры делятся в зависимости от того, производной какой кислоты они являются (неорганической или карбоновой).
Среди сложных эфиров особое место занимают природные эфиры — жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами, содержащими четное число углеродных атомов.

Содержание

Введение -3-
1. Строение -4-
2. Номенклатура и изомерия -6-
3. Физические свойства и нахождение в природе -7-
4. Химические свойства -8-
5. Получение -9-
6. Применение -10-
6.1 Применение сложных эфиров неорганических кислот -10-
6.2 Применение сложных эфиров органических кислот -12-
Заключение -14-
Использованные источники информации -15-

Вложенные файлы: 1 файл

Сложные эфиры .doc

— 271.50 Кб (Скачать файл)

   Изопропилацетат СН3СООСН(СН3)2. По свойствам занимает промежуточное положение между этил- и пропилацетат.

Амилацетат CH3COOCH2CH2CH2CH2CH3, т. кип. 148° С, иногда называют «банановым маслом» (которое он напоминает по запаху). Он образуется в реакции между амиловым спиртом (часто – сивушным маслом) и уксусной кислотой в присутствии катализатора. Амилацетат широко применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.

   Фруктовые эфиры. Характер многих фруктовых запахов, таких, как запахи малины, вишни, винограда и рома, отчасти обусловлен летучими эфирами, например этиловым и изоамиловым эфирами муравьиной, уксусной, масляной и валериановой кислот. Имеющиеся в продаже эссенции, имитирующие эти запахи, содержат подобные эфиры.

   Винилацетат CH2=CHOOCCH3, образуется при взаимодействии уксусной кислоты с ацетиленом в присутствии катализатора. Это важный мономер для приготовления поливинилацетатных смол, клеев и красок.

Мыла — это соли высших карбоновых кислот. Обычные мыла состоят главным образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла, калиевые соли — жидкие мыла.

Мыла получаются при гидролизе жиров в присутствии щелочей:

Обычное мыло плохо стирает  в жесткой воде и совсем не стирает  в морской воде, так как содержащиеся в ней ионы кальция и магния дают с высшими кислотами нерастворимые  в воде соли:

 

   Ca2+ + 2C17H35COONa→Ca(C17H35COO)2↓ + 2Na+

 

В настоящее время  для стирки в быту, для промывки шерсти и тканей в промышленности используют синтетические моющие средства, которые обладают в 10 раз большей  моющей способностью, чем мыла, не портят тканей, не боятся жесткой и даже морской воды.

 

 

 

 

 

 

 

 

 

 

 

Заключение

 

Исходя из вышесказанного, можно сделать вывод, что сложные  эфиры находят широкое применение, как в быту, так и в промышленности. Некоторые из сложных эфиров готовятся искусственно и под названием «фруктовых эссенций» широко применяются в кондитерском деле, в производстве прохладительных напитков, в парфюмерии и во многих других отраслях. Жиры используют для многих технических целей. Однако особенно велико их значение как важнейшей составной части рациона человека и животных, наряду с углеводами и белками. Прекращение использования пищевых жиров в технике и замена их непищевыми материалами – одна из важнейших задач народного хозяйства. Эта задача может быть разрешена только при достаточно основательных знаниях о сложных эфирах и дальнейшем изучении этого класса органических соединений.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Использованные  источники информации

 

  1. Цветков Л.А. Органическая химия: Учебник для 10-11 классов общеобразовательных учебных заведений. - М.: Гуманит. изд. центр ВЛАДОС, 2001;
  2. Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1-2, М.,1969-70.;
  3. Глинка Н. Л. Общая химия: Учебное пособие для вузов. – 23-е изд., испр./ Под ред. В. А. Рабиновича. – Л.: Химия, 1983;
  4. http://penza.fio.ru
  5. http://encycl.yandex.ru

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение

Физико-химические свойства сложных эфиров

Название

Давление пара при 20°С, кПа

Молеку- лярная масса

Темпера- тура кипения  при 101,325 кПа. °С

Плотность при 20°С. г/см3

Показа- тель перелом- ления n20

Поверхнос- тное натяжение 20°С. мН/м

Метилацетат

23,19

74,078

56,324

0,9390

1,36193

24,7625,7

Этилацетат

9,86

88,104

77,114

0,90063

1,37239

23,75

Пропилацетат

3,41

102,13

101,548

0,8867

1,38442

20,53

Изопропилацетат

8,40

102,13

88,2

0,8718

1,37730

22,1022

Бутилацетат

2,40

116,156

126,114

0,8813

1,39406

25,2

Изоиутилацетат

1,71

116,156

118

0,8745

1,39018

23,7

Втор-Бутилацетат

-

116,156

112,34

0,8720

1,38941

23,3322,1

Гексилацетат

-

114,21

169

0,890

-

-

Амилацетат

2,09

130,182

149,2

0,8753

1,40228

25,8

Изоамилацетат

0,73

130,182

142

0,8719

1,40535

24,6221,1

Ацетат монометилового эфира этиленгликоля (метилцеллозольвацетат)

0,49

118,0

144,5

1,007

1,4019

-

Ацетат моноэтилового  эфира этиленгликоля (этилцеллозольвацетат)

0,17

132,16

156,4

0,9748

1,4030

-

Этиленгликольмоноацетат

-

104

181-182

1,108-1,109

-

-

Этиленгликольдиацетат

0,05

146

186-190

1,106

-

-

Циклогексилацетат

0,97

142

175

0,964

1,4385

-

Этиллактат

0,13

118,13

154,5

1,031

1,4118

28,917,3

Бутиллактат

0,05

146,0

185

0,97

-

-

Пропиленкарбонат

-

102,088

241,7

1,206

1,4189

-



Информация о работе Сложные эфиры