Создание биообъектов

Автор работы: Пользователь скрыл имя, 29 Октября 2014 в 15:42, реферат

Краткое описание

Биообъект — центральный и обязательный элемент биотехнологического производства, создающий его специфику.
Биообъектом может быть целостный сохранивший жизнеспо-собность многоклеточный или одноклеточный организм. Им мо¬ гут являться изолированные клетки многоклеточного организма, а также вирусы и выделенные из клеток мультиферментные ком¬плексы, включенные в определенный метаболический процесс. Наконец, биообъектом может быть индивидуальный изолирован¬ный фермент.

Содержание

1. Понятие «биообъект». . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Общая характеристика. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Рекомбинантные белки как лекарственные средства. . . . . . . . . . . . . . . . . . . 8
4. Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Вложенные файлы: 1 файл

КНЫШ.doc

— 100.00 Кб (Скачать файл)

Содержание

1. Понятие «биообъект». . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Общая характеристика. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Рекомбинантные белки как лекарственные средства. . . . . . . . . . . . . . . . . . . 8

4. Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Понятие «биообъект»

Биообъект — центральный и обязательный элемент биотехнологического производства, создающий его специфику.

 Биообъектом может быть целостный сохранивший жизнеспособность многоклеточный или одноклеточный организм. Им мо гут являться изолированные клетки многоклеточного организма, а также вирусы и выделенные из клеток мультиферментные комплексы, включенные в определенный метаболический процесс. Наконец, биообъектом может быть индивидуальный изолированный фермент.

Функция биообъекта — полный биосинтез целевого продукта, включающий ряд последовательных ферментативных реакций или катализ лишь одной ферментативной реакции, которая имеет ключевое значение для получения целевого продукта. Биообъект, осуществляющий полный биосинтез целевого продукта, называется продуцентом.

Биообъект, являющийся индивидуальным ферментом или выполняющий функцию одной ферментативной реакции, используемой биотехнологом, называют промышленным биокатализатором.

Таким образом, к биообъектам относятся как макромолекулы, так микро- и макроорганизмы.

В качестве макромолекул в промышленном производстве используются ферменты всех известных классов, но наиболее часто — гид рол азы и трансферазы.

Доказано, что использование ферментов в производстве в им мобилизованном виде, т.е. связанных с нерастворимым носителем, наиболее рационально, так как в этом случае обеспечиваются многократность их применения и стандартность повторяющихся производственных циклов.

 С некоторой условностью  «Лестница живых существ» начинается с вирусов. Последние в качестве биообъектов (с ослабленной патогенностью) используются, прежде всего, для приготовления вакцин.

Как биообъекты микробные клетки прокариот и эукариот в современном биотехнологическом производстве занимают доминирующее положение. Они являются продуцентами используемых в качестве лекарственных средств первичных метаболитов: аминокислот, азотистых оснований, коферментов, моно- и дисахаров, ферментов медицинского назначения, применяемых в заместительной терапии и т.д.

Микроорганизмы образуют огромное количество вторичных метаболитов, многие из которых также нашли применение, например, антибиотики и другие корректоры гомеостаза клеток млекопитающих.

Пробиотики — препараты на основе биомассы отдельных видов микроорганизмов используются при дисбактериозах для нормализации микрофлоры желудочно-кишечного тракта. Микроорганизмы необходимы также при производстве вакцин. Наконец, микробные клетки методами генной инженерии могут быть превращены в продуценты видоспецифических для человека белковых гормонов, белковых факторов неспецифического иммунитета и т.д.

Высшие растения являются традиционным и к настоящему времени все еще наиболее обширным источником получения лекарственных средств. При использовании растений в качестве биообъектов основное внимание сосредоточено на вопросах культивирования растительных тканей на искусственных средах (каллусные и суспензионные культуры) и открывающихся при этом новых перспективах.

Традиционными поставщиками лекарственных и диагностических средств являются представители животного мира. Довольно часто в качестве биообъектов выступают млекопитающие, птицы, рептилии, амфибии, членистоногие, рыбы, моллюски. Разнообразие образуемых ими биологически активных соединений, нашедших применение в медицине, крайне велико.

 В последние годы в связи с развитием технологии рекомбинантной ДНК стремительно возрастает важность такого биообъекта как человек, хотя на первый взгляд это кажется парадоксальным.

 В принципе, человек уже давно мог быть отнесен к биообъектам, например, при получении гомологичной антисыворотки или в случае использования тканей и органов человека для их пере садки, например, костного мозга, почек и т.д.

Однако биообъектом с позиций биотехнологии (при использовании биореакторов) человек стал лишь после реализации возможности клонирования его ДНК (точнее ее экзонов) в клетках микроорганизмов. За счет такого подхода был ликвидирован дефицит сырья для получения видоспецифических бел ков человека.

 

2. Общая характеристика 

Генетическая инженерия гораздо конкретнее и точнее клеточной по характеристике используемых объектов и оперирует в основном с разными по форме и размерам фрагментами клетки. Отметим, что термины «генетическая инженерия», «генная инженерия», «рекомбинантная ДНК» — равноценны.

Понятие генетической инженерии имеет очень широкий спектр и поэтому не может быть сформулировано кратко. В качестве одного из вариантов генетическую инженерию можно представить как соединение фрагментов ДНК природного и синтетического происхождения или их комбинацию in vitro с последующим введением полученных рекомбинантных структур в живую клетку для того, чтобы введенный фрагмент ДНК после включения его в хромосому либо реплицировался, либо автономно экспрессировался. Следовательно, вводимый генетический материал становится частью генома клетки.

До перечисления этапов работы генного инженера укажем, что он должен иметь в своем распоряжении:

а) генетический материал (клетку-хозяина);

 б) транспортное устройство — вектор, переносящий генетический материал в клетку;

в) набор специфических ферментов — «инструментов» генной инженерии.

Принципы и методы генетической инженерии отработаны, прежде всего, на микроорганизмах; бактериях — прокариотах и дрожжах — эукариотах.

Наибольшие практические успехи генетической инженерии применительно к биотехнологии лекарственных средств достиг нуты в настоящее время в области создания штаммов микроорганизмов — продуцентов видоспецифичных для человека белков. Такие белки для микробной клетки являются чужеродными, в организме же человека одни из них играют роль биорегуляторов (белковые гормоны), другие — факторов врожденного иммунитета (интерфероны и т.д.)

Стратегическая цель генного инженера — создание принципиально нового биообъекта для биотехнологического производства — микроорганизма с человеческим геном.

При выборе микроорганизма как потенциального продуцента учитывается ряд обстоятельств.

1. Поскольку микроорганизм будет выращиваться в производственных условиях в большом количестве и с ним будут контактировать многие работники предприятия (биологи, химики и др.), желательно, чтобы он не был патогенным. Кроме того, целевой генно-инженерный продукт, выделяемый из микроорганизма, должен иметь гарантии отсутствия даже следов микробных токсинов.

2. Проникший в клетку микроорганизма вектор с чужеродным для нее геном (или кластером генов) не должен расщепляться эндонуклеазами этой клетки, т. е. генетический материал должен сохраняться. При этом рибосомы потенциального продуцента должны воспринимать информационную РНК, соответствующую чужеродному материалу.

3. Образовавшийся чужеродный для клетки белок (для биотехнолога — целевой продукт) не должен расщепляться ее протеазами, т.е. не подвергаться воздействию систем репарации клетки, гидролизующих чужеродные белки. Ослабление действия таких систем также является одним из предварительных этапов работы генного инженера с продуцентом.

4. Желательно, чтобы у потенциального продуцента чужеродного белка (целевого продукта) последний выводился из клетки в питательную среду, что значительно облегчит его последующее выделение и очистку.

Предварительная работа генного инженера начинается с само го гена, кодирующего целевой белок. К этому гену присоединяется нуклеотидная последовательность, в свою очередь, кодирующая так называемую лидерную последовательность аминокислот (пре имущественно гидрофобных). Синтезированный в клетке целевой продукт с такой лидерной последовательностью аминокислот с их помощью проходит через липидные слои цитоплазматической мембраны из клетки наружу. Однако в этом случае клетка продуцента должна быть изменена генным инженером. В частности, в мембране должна находиться «сигнальная протеаза», отщепляющая от генного продукта лидерную последовательность аминокислот перед его выходом в среду.

Для того чтобы вектор с чужеродным геном проник в клетку, ее подвергают специальной обработке солями лития или кальция в зависимости от вида микроорганизма. В результате в стенке оболочки клетки формируются небольшого диаметра отверстия, через которые в нее проникают молекулы вектора. Обработанные таким путем клетки получили название компетентных: они способны воспринимать переносимую вектором информацию.

 Важным предварительным этапом  работы генного инженера является  подбор вектора. Векторы, используемые при работе с микроорганизмами, конструируются чаще всего на основе умеренных фагов или плазмид. Преимущество плазмид перед фагами заключается в отсутствии лизиса клетки, возможного при работе с умеренными фагами.

При создании нового рекомбинантного продуцента ключевым моментом в работе генного инженера является встраивание гена (кластера генов) в вектор, точнее в ДНК векторной молекулы, например в плазмиду. Это становится возможным благодаря тому, что в распоряжении генных инженеров имеется большой набор разных по субстратной специфичности эндонуклеаз, получивших рабочий термин рестрикгазы (от англ. restriction — разрезание). В на стоящее время известны многие десятки разных рестриктаз, дифференцируемые на рестриктазы, разрезающие либо одну из двух комплементарных нитей ДНК, либо сразу обе нити.

Для биотехнолога в первую очередь представляют интерес рестриктазы, катализирующие разрез только одной нити в углеводно-фосфатной цепи ДНК. Помимо этого важно, чтобы рестриктаза, которая будет разрезать эту нить, была достаточно высоко специфична. Это значит, что последовательность нуклеотидов, обязательная для выбора данной рестриктазой места разреза углеводно-фосфатного каркаса ДНК, должна быть относительно велика. Например, часто используемая в генно-инженерных исследованиях рестриктаза EcoRI, выделенная из Е. coli (Escherichia coli — кишечная палочка) распознает нуклеотидную последовательность, если азотистые основания располагаются в ней в таком порядке: —GAATTC—; разрез (разрыв) углеводно-фосфатного каркаса од ной из двух комплементарных нитей ДНК происходит между G и А. Однако вторая комплементарная нить имеет фактически одинаковую последовательность: — CTTAAG —. Поэтому рестриктаза расщепляет и вторую нить, также между G и А.

Таким образом, сохраняя свою субстратную специфичность, рестриктаза, способная к расщеплению одной нити, разрезает фактически обе, при этом разрезы находятся не напротив, а на некотором расстоянии один от другого. В результате комплементарные нити расходятся вследствие непрочности водородных связей между основаниями в каждой нуклеотидной паре и создаются однонитевые участки — согласно рабочей терминологии «липкие концы». Образно говоря, в двухнитевой ДНК появляется щель, с двух сторон которой находится по липкому концу. В эту щель может быть встроен ген — фрагмент ДНК, если он фланкирован (четко обозначен) однонитевыми участками, комплементарными однонитевым липким концам, сформированным в результате действия рестриктазы на вектор.

Чтобы подготовить включение гена в вектор, надо использовать рестриктазу той же специфичности. Если для образования липких концов в векторе применялась рестриктаза EcoRI, то ее и следует применять для образования липких концов во встраиваемом фрагменте. Разумеется, липкие концы не должны образовываться в самом гене. Здесь выявляется преимущество рестриктаз, распознающих длинные последовательности по порядку расположения пар нуклеотидов.

Количество таких последовательностей в молекуле Д Н К, которые обнаруживает рестриктаза, резко уменьшается по мере воз растания в них числа пар нуклеотидов. Следовательно, уменьшается возможность повредить рестриктазой сам ген, который, оказываясь между местами «посадки» молекул рестриктазы на ее субстрат — ДНК, включается в вектор в неповрежденном виде.

Другой прием, который может быть использован генным инженером — фланкирование гена синтетическими последовательностями нуклеотидов, т.е. получение методами биоорганической химии липких концов с заданным порядком нуклеотидов.

Ген (или кластер генов), встроившийся в вектор, удерживается в нем вначале только за счет водородных связей между комплементарными липкими концами. Эта стадия получила название «отжиг». Для того чтобы ген оказался прочно встроенным в век тор, необходимо его закрепление ковалентными связями. Для этих целей служат ферменты-лигазы (от «лиговать» — сшивать), замыкающие разрывы в углеводно-фосфатном каркасе ДНК. После этой стадии работы генного инженера вектор с прочно закрепленным в нем геном может вводиться в микробную клетку. Однако про цент успешного включения вектора в клетку, как правило, край не невелик.

Суспензия клеток микроорганизма с вектором после инкубации высевается на твердую питательную среду, а затем выросшие колонии переносятся на агаровый косяк. Полученные культуры (клоны) должны быть проверены на содержание в их клетках век тора с геном (кластером генов), кодирующим целевой продукт, например, видоспецифичный для человека белковый гормон или видоспецифичный фактор врожденного иммунитета и т.п.

Если малая частота включения в клетку вектора означает, что вектор воспринимают лишь 0,01—0,1% клеток, то легко представить, какое огромное количество культур надо проверить, чтобы обнаружить культуру, синтезирующую целевой продукт. Для обнаружения этого продукта по его функции надо предварительно его выявить, выделить, очистить и испытать in vitro или в опытах на животных. Однако анализировать, таким образом, тысячи культур практически невозможно. В связи с этим разработан метод предварительного отбора клонов, содержащих вектор.

Вводится понятие гена-маркера. Такой ген легко «заявляет о себе», т.е. маркирует клетку и, соответственно, клон. Ген-маркер также встраивается в вектор, но, разумеется, с помощью другой рестриктазы, выбирающей другую последовательность нуклеотидов, так что встраивание его в «рабочий» ген заранее исключено. Ген-маркер занимает «свое» место в векторе. Этот ген не будет иметь никакого значения в будущем биотехнологическом процессе, но он нужен для отбора продуцента целевого продукта, кодируемого «рабочим» геном. Примером маркера может быть ген, кодирующий фермент беталактамазу. Этот фермент инактивирует беталактамные антибиотики, катализируя гидролиз их беталактамного кольца.

Информация о работе Создание биообъектов