Технология герметизации погружного насоса эпоксидным компаундом

Автор работы: Пользователь скрыл имя, 26 Июня 2014 в 17:41, курсовая работа

Краткое описание

Производство эпоксидных смол началось с исследований проводимых в США и Европе накануне второй мировой войны. Первые смолы — продукты реакции эпихлоргидрина с бисфенолом А — были получены в промышленных масштабах в 1947 г. За 10 лет уровень их производства составил свыше 13,6 тыс. т., в последующие шесть лет уровень производств их увеличился в 3 раза. В конце 50-х годов были получены новые эпоксидные смолы, отличные от диглицидилового эфира; в конце 1960 г. промышленностью освоено производство не менее 25 типов смол. На этом этапе термин «эпоксидная смола» становится общим и в настоящее время применяется к большому семейству материалов.

Содержание

Введение
1. Эпоксидные смолы
1.1 Технологический процесс изготовления эпоксидной смолы
1.2 Отверждение эпоксидных смол
1.3 Марки эпоксидных смол
2. Области применения
2.1 Эпоксидные компаунды
2.1.1 Эпоксидные формовочные компаунды
2.1.2 Эпоксидные смолы для инструмента и приспособлений
2.1.2.1 Формы из эпоксидных смол для заливочных и формовочных компаундов
2.1.2.2 Эпоксидные смолы для матриц
2.1.2.3 Системы из эпоксидных смол для штампования металла.
2.1.3 Литье, заливка, капсулирование, герметизация.
2.1.4 Стеклопластики на основе эпоксидных смол
2.1.5 Клеи на основе эпоксидных смол
2.1.6 Марки эпоксидных композиций
2.2 Пенопласты из эпоксидных смол
2.1 Химические пенопласты
2.2 Синтактические пенопласты
2.3 Покрытия эпоксидными порошками
3. Технология герметизации погружного насоса эпоксидным компаундом
3.1 Характеристика сырья
3.2 Описание принципа работы линии
3.3 Выбор оборудования
Заключение
Список использованной литературы

Вложенные файлы: 1 файл

Эпоксидные смолы.doc

— 1.04 Мб (Скачать файл)

2.1.4 Стеклопластики на  основе эпоксидных смол

Эпоксидные смолы применяются в качестве связующих в производстве стеклопластиков. Они обладают хорошей адгезией к стекловолокну, могут отверждаться на холоду, не дают усадки при отверждении. Это позволяет получать на их основе высокопрочные стеклопластики. Для их формирования достаточно лишь контактного давления. На свойства стеклопластиков большое влияние оказывает вид отвердителя.

Действие высоких температур (200-250о ) в значительной мере влияет на свойства стеклопластиков. Для увеличения их температуроустойчивости используют модификацию эпоксидных смол. Хорошие результаты получают при модификации фенолоформальдегидными резольными смолами. Потеря прочности при повышенных температурах равна 30-50%.

Композиции на основе стекла и эпоксидной смолы дают механические свойства, лучшие в сравнении с полиэфирными смолами, электрические свойства, лучшие в сравнении с фенольнымн смолами, а влагостойкость, стойкость к усталостным нагрузкам и прочность при межслоевом сдвиге лучшие, чем у полиэфирных и фенольных смол. Лучшая прочность при высокой температуре получается со специальными фенольными и кремнийорганическими рецептурами.

Свойства стеклоэпоксидных композиций могут изменяться в довольно широких пределах с помощью выбора смолы, отвердителя и модификатора. Из-за многосторонности их свойств и очень хороших характеристик композиции на основе стекла и эпоксидной смолы находят широкое применение в военной и гражданской технике.

2.1.5 Клеи на основе эпоксидных  смол

Эпоксидные клея обладают следующими преимуществами:

1. Могут склеивать разнородные материалы и тем самым устраняется гальваническая коррозия.

2. Отверждение может проводиться  при невысоки температурах, чаще  всего при комнатной.

3. Может быть получено  хорошее склеивание матерналов, плохо поддающихся склеиванию, например  стекол.

4. Чаще всего отверждение проводится без приложения давления, так как во время отверждения почти не выделяется летучих веществ.

5. Могут быть получены  герметичные я химостойкие соединения.

6. Прочность клеевого  слоя в довольно широких пределах  не зависит от его толщины.

Кроме довольно высокой стоимости и трудностей производства у эпоксидных клеев имеются следующие недостатки:

1. Для получения хорошего  склеивания требуется тщательная  подготовка поверхности.

2. Для получения высокой  прочности требуется хорошая  конструкция соединения.

3. Ударная вязкость невысока, особенно у материалов, предназначенных  для работы при повышенных  температурах.

Эпоксидные композиции могут нспользоваться для склеивания металлов, разнородных материалов и пористых конструкций

Эпоксидные клеи в ряде специальных отраслей промышленности используются для приклеивания металла к пластмассе, чаще всего полиэфирных или фенольных пластмасс к алюминию или стали. Количество материалов, которые склеиваются, весьма значительно. Так, например, одной и той же композицией можно склеить между собой полиэфирную пленку, алюминий, медь, железо, магниевые сплавы, медную проволоку, изолированную пластмассой, резину и посеребренную бронзу.

Существует ряд применений эпоксидных клеев в авиационной и космической технике, наиболее распространенным из которых является склеивание разнородных материалов, например склеивание солнечных батарей на спутниках или приклеивание медной фольги к фенольной пластмассе для изготовления печатных схем.

Кроме этого, эпоксидные смолы используются довольно широко для укрепления драгоценных камней в оправах.

Эпоксидные клеи могут использоваться для связки практически любого типа наполнителя, причем количество эпоксида в этом случае в получающемся материале крайне незначительно, эпоксид идет только на покрытие частичек наполнителя и связывает их прочно в точках соприкосновении. В качестве связующего опилок они используются для изготовления скульптур и барельефов. Можно получить декоративные пористые композиции, используя эпоксиды для связки морской гальки.

Эпоксидные композиции, обычно используемые в качестве растворов, могут применяться в качестве грунтов для создания хорошей адгезии внешнего покрытия к изделию или для увеличения коррозионной стойкости. Типичным применением такого плана является создание грунтового покрытия на старой алкидной краске перед нанесением нового слоя той же краски.

Такие эпоксидные грунты используются и для создания промежуточных покрытий на бетоне для того, чтобы новые слои бетона хорошо сцеплялись со старым бетоном.

Эпоксидные смолы имеют хорошую адгезию ко всем термореактивным пластмассам, кроме кремнийорганических, и к большинству термопластичных, кроме полиолефинов, фторопластов а некоторых пластифицированных венилов.

Эпоксиды широко используются для склейки полиэфирных слоистых пластиков, например при производстве баков для горючего в военных самолетах и для ремонта судов, изготовленных из полиэфирных стеклопластиков. Специальные клеи используются для приклейки фторопластовых прокладок, для приклейки найлонофенольных покрытий головок реактивных снарядов и т. д. Были разработаны стойкие к воздействию горячего пара клеи для склейки целлофана.

Эпоксидные клеи могут иметь хорошую адгезию к стеклу и дают возможность изготавливать эпоксидные стеклопластики.

Эпоксидные смолы в качестве клеевых композиций могут применяться для многих целей и в разных видах: в виде жидкостей холодного отверждения, в виде жидкостей горячего отверждения; в виде однокомпонентной жидкости горячего отверждения; в виде порошков и лент. Эпоксидные клен кашли широкое применение для склеивания металлов в самолето- и ракетостроении.

Эпоксидные клен — это высокопрочные компаунды, и вследствие этого они требуют более тщательной подготовки склеиваемых поверхностей, чем другие менее прочные материалы. Кроме того, так как они обладают малой прочностью на неравномерный отрыв, для получения наилучших результатов место соединения надо делать таким образом, чтобы напряжение распределялось по поверхности всего клеевого слоя.

Эпоксидные клеи холодного отверждения способны работать при температуре не выше 100 °С. Клеи горячего отверждения при повышенных температурах обладают лучшими свойствами, и поэтому нашли более широкое применение. Нагревостойкие клеевые композиции применяются в основном в авиационной промышленности и космической технике; технология их применения может быть очень специфичной для каждого отдельного случая.

В эпоксидную клеевую композицию, состоящую из эпоксидкой смолы и отвердителя, могут вводиться пластификаторы и наполнители.

Введение пластификаторов увеличивает прочность клеевого соединения на неравномерный отрыв и ударную вязкость, но уменьшает его нагревостойкость. Наполнители служат для уменьшения температурного расширения композиции, снижения ее стоимости и уменьшения усадки. Наполнители и пластификаторы различных типов содержатся фактически во всех эпоксидных клеевых композициях.

2.2 Пенопласты из эпоксидных смол

Пенопласты из эпоксидных смол характеризуются хорошей силой сцепления, низкой влаговодопоглощаемостью, хорошей стабильностью размеров, хорошей нагревостойкостью и особенно хорошей химостойкостью. Свойства жестких и полужестких пен, менее густых, находятся на том же уровне, что и для композиций из полиуретана. Эпоксидные смолы имеют ряд преимуществ, такие как повышенная водостойкость, способность противостоять высоким температурам и длительно работать при них. Но так как существующие более дешевые пены имеют свойства, вполне удовлетворяющие большинству промышленных требований, то вследствие крайних трудностей, заключающихся в создании эластичной эпоксидной системы, то пены из эпоксидных смол не завоевали широкого применения, и используются только для специальных целей.

Эпоксидные пены низкой вязкости нашли широкое применение как заливочный компаунд дли электронного оборудования. Эпоксидные пены большой вязкости используются как объемные опоры, часто они применяются совместно со слоистыми пластиками, создавая многослойную конструкцию. Они могут быть также использованы как теплоизоляционные покрытия.

Вследствие низкой водопоглощаемости эпоксидные пенопласты находят применение в оборудовании для рыболовных судов, в строительстве других больших судов и для замедления испарений нефтепродуктов в танкерах. Их использование для звукоизоляции менее успешно, чем пенопластов с более открытыми ячейками, вследствие одноклеточной структуры последних. Существует два типа пенопластов — химические и синтактические. Химические пенопласты производятся продуванием газа во время химической реакции в течение отверждения. Синтактические пены получаются добавлением наполнителей в систему.

 

2.2.1 Химические пенопласты

Эпоксидная смола может быть превращена в пену во время процесса отверждения, если в ней присутствует некоторый элемент, выделяющий газ или пар при температуре, предшествующей гелеобразованию.

Отверждающий агент может сам реагировать таким образом, что будет выделять газ. Примерами такого типа отвердителей являются амины боранов, такие как демителборан, пиридин борана, метиловый эфир борана, акнднитовая кислота и замещенный фосфатоборогидрид. Могут быть добавлены компаунды, которые, реагируя с отвердителямн, выделяют газ, например, N,N'-динитросо-N,N'-диметил терефталатамид будет реагировать с отвердителем — жирным полиамидом с выделением азота в течение отверждения, и перекись водорода будет образовывать пены преимущественно с отвердителями-аминами.

Газы, имеющие высокую температуру кипения (например, фреон), могут быть добавлены в композицию под повышенным давлением и впоследствии высвобождены. Низкокипящие жидкости могут быть дополнены испарением при нагревании. Наполнители могут применяться те, которые содержат достаточно влаги и воздушных включений, вместе с возможно реакционноспособными частями, в таком случае может быть получена пена.

Физические свойства эпоксидных химических пенопластов могут изменяться в зависимости от отвердителя, особенно для улучшения нагревостойкости или ударной вязкости. Кроме того, свойства вспениваемого продукта сильно зависят от плотности самой пены.

Прочность при сжатии для твердых пенопластов при комнатной температуре изменяется от 4,2 кгс/см2 три плотности 0,08 г/см3 примерно до 77 кгс/см2 при плотности 0,33 г/см3 . Зависимость в этом диапазоне очень близка к линейной. Для твердых пенопластов с плотностью 0,08 г/см2 модуль упругости составляет 175 кгс/см2 , в то время как для пенопластов с плотностью 0,12 г/см2 он составляет 190 кгс/см2 . Прочность при растяжении для твердых (пенопластов составляет 3,5 кгс/см2 при плотности в 0,08 г/см3 и около 35 кгс/см2 при плотности в 0,3 г/см2 . Нагревостойкость эпоксидных пенопластов в большой степени зависит и от выбранного отвердителя, и от плотности пенопласта.

Блоки эпоксидных пенопластов могут быть сжаты при повышенной температуре и затем охлаждены под давлением. Они сохранят эту сжатую форму, пока не будут нагреты вторично. Таким образом, они могут работать в сжатом виде и затем расшириться под действием нагревания.

Электрические свойства пенопласта, подобно физическим свойствам, зависят от плотности. При малой плотности ε имеет очень низкие значения, так как объем главным образом занят воздухом с ε=1. С повышением плотности пенопласта ε увеличивается, так как увеличивается количество эпоксидной смолы в единице объема.

Теплоизоляционные свойства эпоксидных пенопластов очень высокие и приближаются к свойствам воздуха для пенопластов с низкой плотностью и к свойствам эпоксидной смолы для пенопластов с высокой плотностью,

Низкая первоначальная теплопроводность зависит от размеров ячеек и плотности. Когда требуется обеспечить рассеяние тепла, то иногда целесообразно вводить металлические включения, чтобы создать пути потоку тепла. Химостойкость падает прямолинейно по сравнению с невспененной композицией.

2.2.2 Синтактические пенопласты

Второй способ производства эпоксидных пенопластов состоит в использовании микроскопических полых сфер, получаемых из органических или неорганических материалов Органические полые сферы обычно изготавливают из фенольных, мочевнно-формальдегидных или полиэфирных смол. Эти смолы наполнены инертным газом, таким как азот (в случае фенольных сфер), а также фреон или пентан (в случае полиэфирных сфер). Неорганические материалы обычно основываются на основе силиката алюминия или стекла. Применение органических сфер (или микрошариков) ограничено рабочей температурой, т. е. нагревостойкостью органических смол, используемых в их производстве. Использование неорганических же не ограничено, по крайней мере в тех пределах, где используются эпокснды. Неорганические материалы создают более жесткие системы с лучшими прочностными характеристиками, в то время как органические материалы дают меньшую плотность. Технологические характеристики органических и неорганических материалов схожи, и поэтому будет удобно обсуждать их вместе. Для полиэфирных микрошарнков, однако, требуется отдельная обработка, так как эти материалы в отличие от остальных могут расширяться далее в течение реакции отверждения.

Когда микрошарики входят как наполнители, объем этих шариков будет определять плотность отвержденного продукта.

При малых общих объемах шариков композиции могут получиться настолько жидкие, что могут течь, хотя для этих объемов снижение плотности не страшно.

Для создания пенопластов прямо на месте используют загрузку микрошариков в большом количестве. Загрузочные объемы таких пенопластов довольно велики и они обычно уплотняются на месте под значительным давлением. Сначала добавляется отвердитель, смесь перемешивается и потом добавляются фенольные шарики. Результирующий продукт — густая замазка. Вообще говоря, большие загрузочные объемы могут быть получены смешиванием шариков с размельченными частицами смолы. Дегазация системы пустотелых шариков, когда это требуется, довольно сложная вещь. Был предложен метод, заключающийся в вибрации смеси в тонкой пленке и пропускании потока горячего воздуха вдоль поверхности, чтобы разрушить пузырьки.

Так же как с химическими пенопластами, могут применяться металлические наполнители, смолистые модификаторы.

2.3 Покрытия эпоксидными  порошками

Технология применения эпоксидных порошков может быть различной: распыление, разбрызгивание, в виде хлопьев, в псевдожидком слое, в камере в виде тумана.

Информация о работе Технология герметизации погружного насоса эпоксидным компаундом