Трансляция. Второй этап матричного синтеза белка

Автор работы: Пользователь скрыл имя, 22 Июня 2014 в 13:21, реферат

Краткое описание

Клетки должны обладать специальными механизмами для точного, аккуратного и эффективного перевода последовательности мРНК в соответствующую последовательность аминокислот кодируемого белка. Трансляция (биосинтез белков с использованием мРНК в качестве матрицы) осуществляется в клетках при помощи сложной белоксинтезирующей системы. Отдельные компоненты этой системы ассоциируют в единую структуру по мере ее функционирования и разобщаются по окончанию синтеза.

Содержание

Белоксинтезирующая система
Процессы трансляции
2.1. Инициация
2.2. Элонгация
2.3. Терминация
3. Регуляция биосинтеза белка на этапе трансляции
4. Заключение
5.Список литературы

Вложенные файлы: 1 файл

биохимия.docx

— 160.89 Кб (Скачать файл)

Государственное бюджетное образовательное учреждение высшего профессионального  
образования «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения  
и социального развития Российской Федерации

ГБОУ ВПО КрасГМУ им. проф. В.Ф. Войно-Ясенецкого Минздравсоцразвития России

 

 

Факультет фундаментального медицинского образования

 

Кафедра биологической химии с курсом медицинской, фармацевтической и токсикологической химии

 

Реферат

 

По дисциплине «биохимия»
Тема: «Трансляция»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Красноярск 2014

Содержание
  1. Белоксинтезирующая система
  2. Процессы трансляции

2.1. Инициация

2.2. Элонгация

2.3. Терминация

3. Регуляция биосинтеза белка на этапе трансляции

4. Заключение

5.Список литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1.  Белоксинтезирующая система

Клетки должны обладать специальными механизмами для точного, аккуратного и эффективного перевода последовательности мРНК в соответствующую последовательность аминокислот кодируемого белка. Трансляция (биосинтез белков с использованием мРНК в качестве матрицы) осуществляется в клетках при помощи сложной белоксинтезирующей системы. Отдельные компоненты этой системы ассоциируют в единую структуру по мере ее функционирования и разобщаются по окончанию синтеза. В состав белоксинтезирующей системы входят следующие структуры:

  1. Рибосомы;
  2. матричная РН;
  3. транспортная РНК;
  4. белковые факторы и ферменты инициации, элонгации и терминации трансляции;
  5. набор аминокислот;
  6. набор аминоацил-тРНК-синтетаз, образующих аминоацил-тРНК;
  7. макроэрги АТФ и ГТФ;
  8. ионы Mg 2+, Ca2+, K+, NH4+.

Синтез белка представляет собой циклический многоступенчатый энергозависимый процесс, в котором свободные аминокислоты полимеризуется в генетически детерминированную последовательность с образованием полипептидов. Система белкового синтеза, точнее, система трансляции, которая использует генетическую информацию, транскрибированную в мРНК, для синтеза полипептидной цепи с определенной первичной структурой, включает около 200 типов макромолекул – белков и нуклеиновых кислот. Среди них около 100 макромолекул, участвующих в активировании аминокислот и их переносе на рибосомы, более 60 макромолекул, входящих в состав 70S или 80S рибосом, и около 10S макромолекул, принимающих непосредственное участие в системе трансляции. Белковый синтез, или процесс трансляции, может быть условно разделен на 2 этапа: активирование аминокислот и собственно процесс трансляции.

Второй этап матричного синтеза белка, собственно трансляцию, протекающей в рибосоме, условно делят на три стадии: инициации, элонгации и терминации.

  1. Процессы трансляции
Второй этап матричного синтеза белка, собственно трансляцию, протекающую в рибосоме, условно делят на три стадии: инициацию, элонгацию и терминацию.
2.1. Инициация

Стадия инициации, являющаяся «точкой отсчета» начала синтеза белка, требует соблюдения ряда условий, в частности наличия в системе, помимо 70S (или 80S) рибосом, инициаторной амино-ацил-тРНК (аа-тРНК), инициирующих кодонов в составе мРНК и белковых факторов инициации. Экспериментально доказано, что синтез белка инициирует единственная аминокислота – метионин. В кодовом «словаре» имеется только один кодон дляметионина (АУГ), однако во всех живых организмах открыты две тРНК для метионина: одна используется при инициации синтеза белка, другая – для включения метионина во внутреннюю структуру синтезируемого полипептида в стадии элонгации . Соответственно эти тРНК принято обозначать тРНКфМет и тРНКМет. Эукариотическая  клетка не нуждается в формилировании метионина.

У прокариот синтез N-формилметионил-тРНК протекает в две стадии:

Данную стадию катализирует метионил-тРНК-синтетаза. Реакция нуждается в доставке энергии гидролиза АТФ.

Катализирующая II стадию трансформилаза оказалась более специфичной, чем метионил-тРНК-синтетаза: она не формилирует ни свободный метионин, ни метионин в комплексе с тРНКМет.

Таким образом, N-формилметионил-тРНК является первой аа-тРНК, которая определяет включение N-концевого остатка аминокислоты и тем самым начало трансляции. Процесс формилирования имеет важный химический и биологический смысл: блокируя участие NН2-группы метионина в образовании пептидной связи, он обеспечивает тем самым синтез белка в направлении NH2 –> СООН; образовавшаяся формилметионил-тРНК, кроме того, первой связывается с определенным участком 30S субчастицы рибосомы и с мРНК.

Необходимым условием инициации, как было отмечено, является также наличие инициирующих кодонов, кодирующих формилметионин. У бактерий эту функцию выполняют триплеты АУГ и ГУГ мРНК. Однако они кодируют формилметионин (или начальный метионин в эукариотическойклетке) только будучи начальными триплетами при считывании мРНК. Если эти триплетыявляются обычными, т.е. внутренними, то каждый из них кодирует свою аминокислоту: в частности, АУГ кодирует метионин, а ГУГ – валин. Ясно, что начальный, инициаторный 5'-АУГ-кодон должен чем-то отличаться от других АУГ-кодонов, возможно, структурой окружениятриплета.

    1. Элонгация
В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит аминоацилированную («заряженную» аминокислотой) тРНК в А (аминоацил)-сайт рибосомы. Рибосома катализирует перенос пептида, связанного с тРНК в Р-сайте, в А-сайт и образование пептидной связи с находящимся там аминокислотным остатком. Таким образом растущий пептид удлиняется на один аминокислотный остаток. Затем второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует так называемую транслокацию. Транслокация — перемещение рибосомы по мРНК на один триплет (примерно 20 ангстрем), в результате которого пептидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК из P-сайта переходит в Е-сайт (от слова exit). тРНК из E-сайта диссоциирует спонтанно, после чего рибосома готова к новому циклу элонгации.
    1. Терминация
Терминация представляет собой завершение синтеза полипептидной цепи и освобождение ее от рибосомы. После многих циклов элонгации, в результате которых синтезируется полипептидная цепь белка, в А-участоке появляется терминирующий или нонсенс-кодон. В норме отсутствуют молекулы тРНК, способные узнавать нонсенс-кодоны. Появление в А-участке терминирующего кодона распознается так называемыми факторами высвобождения (R-факторами). RА при участии ГТФ и пептидилтрансферазы обеспечивают гидролиз связи между полипептидом и молекулой тРНК, занимающей P-участок. После гидролиза и высвобождения синтезируемого полипептида и тРНК 80S-рибосома диссоциирует на 40S- и 60S-субъединицы.
Одну и туже цепь мРНК могут транслировать одновременно множество рибосом. Рибосомы, расположенные на одной молекуле мРНК, образуют полисому.

 

 

 

 

 

 

  1. Регуляция биосинтеза белка на этапе трансляции
Лимитирующей стадией процесса трансляции является ее инициация. Наиболее подробно описан процесс изменения скорости инициации трансляции в результате фосфорилирования фактора инициации IF2. Реакция катализируется ферментом IF2-киназой, причем присоединение фосфатной группы инактивирует фактор инициации. Этот феномен был изучен на примере синтеза гемоглобина в ретикулоцитах. Оказалось, что активация IF2-киназы происходит за счет ее фосфорилирования цАМФ-зависимой протеинкиназой. Взаимодействие этой протеинкиназы с цАМФ и ее активацию блокирует гем, выполняя тем самым негативный контроль синтеза гемоглобина.
К лекарственным веществам, эффективно влияющим на синтез белка, относятся антибиотики. Большинство антибиотиков противобактериального действия ингибируют процессы трансляции. Такие антибиотики, как норвалин и индомицин, препятствуют образованию аминоацил-тРНК; стрептомицин, неомицин, конвалин, ауринтрикарбоновая кислота ингибируют инициацию трансляции; тетрациклин и стрептомицин ингибируют элонгацию, препятствуя связыванию аминоацил-тРНК с А-центром рибосомы. Пептидилтрансферазная реакция блокируется пуромицином и хлорамфениколом, а транслокация – эритромицином и виомицином.

Заключение

Трансляция крайне важный процесс, и нарушение или выпадение любого звена, участвующего в синтезе белка, почти всегда приводит к развитию патологии, причем клинические проявления болезни будут определяться природой и функцией белка, синтез которого оказывается нарушенным (структурный или функциональный белок). Иногда синтезируются так называемые аномальные белки как результат действия мутагенных факторов и, соответственно, изменения генетического кода (например, гемоглобин при серповидно-клеточной анемии). Последствия этих нарушений могут выражаться в развитии самых разнообразных синдромов или заканчиваться летально. Следует отметить, что организм располагает мощными механизмами защиты: подобные изменения генетического аппарата быстро распознаются специфическими ферментами — рестриктазами, измененные последовательности вырезаются и вновь замещаются соответствующими нуклеотидами при участии полимераз и лигаз.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы:

  1. Акер M. Г., Лорш Д. Р. Механизм субъединицей рибосом, вступающие в течение эукариотических инициации трансляции // Биохимического Общества Сделки. - 2008. - № 36. - П. 653-657.
  2. Биологическая химия//Березов Т.Т., Коровкин Б.Ф., 1990 г.
  3. Маринтчев А., Вагнер Г. Инициации трансляции: структуры, механизмы и эволюция // Quarterly Review " биофизика". - 2004. - № 37. - П. 197-284.
  4. Соненберг Н.,Хиненнбуш А. Г. Регулирования инициации трансляции в эукариот: механизмы и биологические мишени // Ячейки. - 2009. - № 136. - П. 731-745.

Информация о работе Трансляция. Второй этап матричного синтеза белка