Физико-химические методы анализа

Автор работы: Пользователь скрыл имя, 17 Февраля 2013 в 12:33, курсовая работа

Краткое описание

Целью данной работы является изучение физико-химических методов мониторинга окружающей среды. Физико-химические методы мониторинга окружающей среды – методы контроля химических веществ, загрязняющих окружающую среду. Они используются для определения состава загрязняющих веществ, их количества в окружающей среде. Различают колориметрические, потенциометрические, люминесцентные методы анализа веществ.

Вложенные файлы: 1 файл

Физико-химические методы исследования.doc

— 161.50 Кб (Скачать файл)

 

                                              Введение

Тема данной курсовой работы , на мой взгляд , весьма актуальна , так как с каждым годом  увеличивается антропогенное воздействие  на окружающую среду . Очень важно  вовремя отслеживать все изменения , происходящие в её состоянии . Именно физико-химические методы получения информации позволяют нам сделать это более точно и быстро.

Целью данной работы является изучение физико-химических методов мониторинга окружающей среды. Физико-химические методы мониторинга окружающей среды – методы контроля химических веществ, загрязняющих окружающую среду. Они используются для определения состава загрязняющих веществ, их количества в окружающей среде. Различают колориметрические, потенциометрические, люминесцентные методы анализа веществ.

 

 

 

 

 

 

 

 

 

 

 

1. Экологический мониторинг

Экологический мониторинг (мониторинг окружающей среды) — это комплексная система наблюдений за состоянием окружающей среды, оценки и прогноза изменений состояния окружающей среды под воздействием природных и антропогенных факторов.

Уровни экологического мониторинга:

  • Глобальный
  • Государственный
  • Региональный
  • Локальный

В России основные концепции экологического мониторинга  заложены еще в 70-х гг. Ю. А. Израэлем мониторинг ОС рассмотрен как система наблюдений, оценки и прогноза антропогенных изменений состояния абиотических компонентов биосферы, ответной реакции экосистем на эти изменения и антропогенных изменений в экосистемах, связанных с воздействием хозяйственной деятельности. По И. П. Герасимову, мониторинг – это система наблюдения, контроля и управления состоянием окружающей среды. В обеих концепциях в основе мониторинга лежит система наблюдений. Система экологического мониторинга должна накапливать, систематизировать и анализировать информацию:

  • о состоянии окружающей среды;
  • о причинах наблюдаемых и вероятных изменений состояния (то есть об источниках и факторах воздействия);
  • о допустимости изменений и нагрузок на среду в целом;
  • о существующих резервах биосферы.

Таким образом, в систему экологического мониторинга входят наблюдения за состоянием элементов биосферы и наблюдения за источниками и факторами антропогенного воздействия.

В соответствии с приведенными определениями и  возложенными на систему функциями, мониторинг включает три основных направления деятельности:

  • наблюдения за факторами воздействия и состоянием среды;
  • оценку фактического состояния среды;
  • прогноз состояния окружающей природной среды и оценку прогнозируемого состояния.

Следует принять  во внимание то, что сама система  мониторинга не включает деятельность по управлению качеством среды, но является источником необходимой для принятия экологически значимых решений информации.

Экологический мониторинг окружающей среды может  проводиться на различных уровнях  пространственной организации: на уровне промышленного объекта, города, области, края, республики в составе федерации, а также на национальном уровне.

Обычно на территории уже имеется ряд сетей наблюдений, принадлежащих различным службам, и которые ведомственно разобщены, не скоординированы в хорологическом, параметрическом, хронологическом и других аспектах. Поэтому задача подготовки оценок, прогнозов, критериев альтернатив выбора управленческих решений становится на базе имеющихся в регионе ведомственных данных, в общем случае, неопределенной. В связи с этим, центральными проблемами организации экологического мониторинга являются эколого-хозяйственное районирование и выбор «информативных показателей» экологического состояния территорий с проверкой их системной достаточности.

 

 

 

 

 

 

 

 

 

2.Физико-химические методы мониторинга ОС

 

Физико-химические методы мониторинга окружающей среды – методы контроля химических веществ, загрязняющих окружающую среду. Они делятся на:

-качественные  методы - позволяют определить, какое вещество находится в испытуемой пробе;

-количественные методы;

-гравиметрический метод. Суть метода состоит в определении массы и процентного содержания какого-либо элемента, иона или химического соединения, находящегося в испытуемой пробе;

-титрометрический (объемный) метод. В этом виде анализа взвешивание заменяется измерением объемов, как определяемого вещества, так и реагента, используемого при данном определении. Методы титрометрического анализа разделяют на 4 группы: а) методы кислотно-основного титрования; б) методы осаждения; в) методы окисления-восстановления; г) методы комплексообразования;

-колориметрические методы. Колориметрия — один из наиболее простых методов абсорбционного анализа. Он основан на изменении оттенков цвета исследуемого раствора в зависимости от концентрации. Колориметрические методы можно разделить на визуальную колориметрию и фотоколориметрию;

-экспресс-методы. К экспресс-методам относятся инструментальные методы, позволяющие определить загрязнения за короткий период времени. Эти методы широко применяются для определения радиационного фона, в системе мониторинга воздушной и водной среды;

-потенциометрические методы основаны на изменении потенциала электрода в зависимости от физико-химических процессов, протекающих в растворе. Их разделяют на: а) прямую потенциометрию (ионометрию); б) потенциометрическое титрование;

 

 

3. ИК-спектрофотометрия

 

Один из физико-химических методов мониторинга – ИК-спектрофотометрия. Инфракрасные спектры поглощения, отражения или рассеяния несут чрезвычайно богатую информацию о составе и свойствах пробы. Сопоставляя ИК спектр образца со спектрами известных веществ, можно идентифицировать неизвестное вещество, определить основной состав пищевых продуктов, полимеров, обнаружить примеси в атмосферном воздухе и газах, провести фракционный или структурно-групповой анализ. Методом корреляционного анализа по ИК спектру пробы также можно определить его физико-химические или биологические характеристики, например всхожесть семян, калорийность пищевых продуктов, размер гранул, плотность и т.д.

        Все органические вещества имеют в инфракрасном диапазоне свои индивидуальные спектры поглощения. Положение полос поглощения в ИК-спектрах веществ характеризуется волновым числом v, см-1, или длиной волны λ, мкм. Для ИК-анализа углеводородов используют диапазон от 0,7 до 25 мкм, который обычно разделяют на три области: ближнюю — 0,7 – 2,5 мкм или 14300-5000 см-1, область основных частот — 2,5-6 мкм или 4000-1600 см-1, дальнюю — 6-25 мкм или 1600 – 400 см-1.

     Ближняя ИК-область  аналитических определений в технологических и экологических целях в нашей стране в отличие от многих развитых стран практически не осваивается.

     Наиболее широко  используется область основных  частот. Нормативные документы по  анализу суммарных загрязнений  окружающей среды нефтепродуктами с ИК спектрометрическим окончанием регламентируют проведение измерений в интервале длин волн 3,30 – 3,5 мкм. Стандартная смесь, содержащая 37,5% изооктана, 37,5% метана, 25% бензола, предназначена для калибровки приборов в этой области. Это обеспечивается рядом причин особенностью приборной базы (достаточно чувствительные и дешевые приемные устройства — фоторезисторы без охлаждения или пироэлектрические приемники, кварцевая оптика, простые оптические схемы); наличием интенсивных полос поглощения 2960 см-1 (3,38 мкм), 2924 см-1 (3,42 мкм), 2850 см-1 (3,5 мкм).

Дальняя ИК-область используется в основном для идентификации источника загрязнения, а также для определения типов нефти по показателю ароматизированности и для структурно-группового анализа.

Пробоподготовка для ИК-детектирования не вызывает сложностей. Анализ с помощью ИК-спектрометрии требует малого количества вещества любой молекулярной массы в любом агрегатном состоянии. После анализа вещество сохраняется неизменным. Что касается приборов для ИКспектроскопии, принципиально новым шагом явилось создание лабораторных  ИК-спектрометров на основе Фурье преобразования. Следует заметить, что большинство отечественных и зарубежных портативных ИК-анализаторов нефтепродуктов проводят измерение концентраций нефтяных загрязнений на одной длине волны. Из этого ряда следует выделить прибор ИКАН-1, в котором предусмотрена возможность установки любой длины волны в диапазоне от 1,85 до 3,5 мкм с индикацией ее значения на цифровом табло. Это дает принципиально новую возможность проводить анализ многокомпонентных смесей на нескольких длинах волн, что позволяет реализовать измерения по стандартной методике ASTM (ISO). Кроме того, с помощью этого прибора возможно определение других органических веществ.

 

 

 

 

 

 

 

 

 

 

 

4.Люминесцентные методы

Люминесцентный  методы характеризуются высокой  экспрессностью и чувствительностью, что позволяет их использовать для  систематического контроля за состоянием биосферы и гидросферы и для определения  микроэлементов, а также суммарного содержания загрязняющих органических веществ и индивидуальных органических соединений.

Люминесцентный  метод относят к числу наиболее чувствительных эмиссионных методов  определения следовых количеств  органических и неорганических примесей в воздухе. Люминесцентный анализ применяют при определении в воздухе полиароматических углеводородов и их производных. Если определяемое соединение не обнаруживается люминесцентным методом анализа, возможен перевод его в производное, обладающее эмиссией флуоресценции. Для количественного анализа используют также явление тушения люминесценции.

Приборы для  люминесцентного анализа могут  быть разделены на две группы, флуориметры  и спектрофлуориметры. Во флуориметрах используют светофильтры, а в спектрофлуориметрах  — дифракционные решетки. В нашей стране наибольшее распространение получил люминесцентно фотометрический анализатор «Флюорат-0,2» В этом приборе источником возбуждения люминесценции служит газоразрядная лампа (для измерения нефтепродуктов — ксеноновая). Спектральная селекция осуществляется интерференционными и стеклянными светофильтрами или монохроматором — дифракционной решеткой. В качестве приемника возбуждаемого света люминесценции служит фотоэлектронный умножитель (ФЭУ). Пробоподготовка при анализе НП в воде проводится экстракцией гексаном. Прибор позволяет измерять содержание целого ряда элементов и органических веществ, в том числе нефтепродуктов, фенолов, ПАВ, полиароматических углеводородов. Несмотря на высокую чувствительность люминесцентного метода, при использовании приборов типа «Флюорат-0,2» для измерения суммарного содержания НП возникает проблема калибровки прибора по стандартному раствору, что необходимо для получения достоверных измерений. Однако до настоящего времени такой стандартный раствор для люминесцентных методов отсутствует. Стандартный раствор изооктан — цетан — бензол, используемый для ИК-спектрометрии, изготавливается на четыреххлористом углероде, который поглощает в рабочей области флуориметра, поэтому калибровку проводят по какому-либо известному НП, например маслу Т-22. В результате при измерениях «тяжелых» НП (мазут и прочее) прибор может дать погрешность до 40 – 50%, а при определении «легких» НП (бензин и прочее) результаты измерений концентрации могут быть занижены в несколько раз. Следует отметить, что в европейских странах ультрафиолетовые методы анализа применяются мало.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Хроматографические методы

Исключительно мощное средство контроля загрязнения  различных объектов окружающей среды - хроматографические методы, позволяющие анализировать сложные смеси компонентов. Наибольшее значение приобрели тонкослойная, газожидкостная и высокоэффективная жидкостная и ионная хроматография. Будучи несложной по технике выполнения, тонкослойная хроматография хороша при определении пестицидов и других органических соединений-загрязнителей. Газожидкостная хроматография эффективна при анализе многокомпонентных смесей летучих органических веществ. Применение различных детекторов, например малоизбирательного детектора по теплопроводности - катарометра и избирательных - пламенно-ионизационного, электронного захвата, атомно-эмиссионного, позволяет достигать высокой чувствительности при определении высокотоксичных соединений. Высокоэффективную жидкостную хроматографию применяют при анализе смесей многих загрязняющих веществ, прежде всего нелетучих. Используя высокочувствительные детекторы: спектрофотометрические, флуориметрические, электрохимические, можно определять очень малые количества веществ. При анализе смесей сложного состава особенно эффективно сочетание хроматографии с инфракрасной спектрометрией и особенно с масс-спектрометрией. В последнем случае роль детектора играет подключенный к хроматографу масс-спектрометр. Обычно приборы такого типа оснащены мощным компьютером. Так определяют пестициды, полихлорированные бифенилы, диоксины, нитрозоамины и другие токсичные вещества. Ионная хроматография удобна при анализе катионного и анионного составов вод.

 

 

 

 

 

 

 

5.1. Газовая хроматография

В основу метода газовой хроматографии положен  следующей принцип: анализ смеси веществ в результате распределения компонентов между несмывающимися фазами, одна из которых – инертный газ (азот, гели и др.), другая – неподвижная (высококипящая жидкость или твердая фаза).

Этот метод  имеет два варианта: газоадсорбция и газожидкостная хроматография.

Разделение  компонентов смеси происходит в  хроматографической колонке. Хроматографические колонки: набивные (длина – 1-3м, диаметр – около 4 мм, материал – стекло, сталь и др.) и капиллярные (длина – до 50м, материал – стекло, кварц).

Выбор неподвижной  фазы (Нф). Эффективность колонки (способность разделять сложные смеси на отдельные компоненты) зависит от размера частиц, на которые нанесена жидкая фаза. Она возрастает при использовании однородных частиц малого размера. Для стандартных набивных колонок оптимальный размер частиц 0,12-0,17 мм. Необходимо учитывать их близость к анализируемым соединениям. Для анализа полярных компонентов применяют полярные фазы, для анализа неполярных компонентов – менее полярные или полностью неполярные.

Информация о работе Физико-химические методы анализа