Автор работы: Пользователь скрыл имя, 11 Ноября 2012 в 10:03, реферат
В настоящее время нет общепринятой классификации многочисленных физических методов изучения состава, строения и свойств молекул, твердых тел и поверхности.
Введение ……………………………………………………………………….. 3
Физические основы метода ………………………………………….…………6
Общая характеристика фотоэлектронных спектрометров …………………..13
Заключение ……………………………………………………………………..17
Литература ……………………………………………………………………...18
Источники излучения. Первым двум требованиям из перечисленных выше удовлетворяет излучение разряда в гелиевой проточной лампе при давлении около 1 мм рт.ст. Резонансная линия (переход 1s ← 2р) отвечает энергии фотона 21,22 эВ ( λ= 584Α0), что достаточно для ионизации от 60 до 80% валентных уровней. Линия перехода 1s ← 3р приблизительно в 20 раз слабее и анализу ФЭ-спектров не мешает. С увеличением плотности тока в разряде появляется резонансная линия ионов Не+ (hν = 40,8 эВ) с интенсивностью, достаточной для наблюдения ФЭ-спектров.
Для изучения остовных уровней наиболее удобным оказалось характеристическое изучение рентгеновских трубок с алюминиевым или магниевым анодом. Энергия AlKα- и MgKα- линий 1486,6 и 1253,6 эВ соответственно достаточна для изучения фотоэмиссии всех элементов. Полуширина дублетных линий 0,7 эВ (Mg) и 0,85 эВ (Аl) при разрешающей силе энергоанализаторов Е / ΔE = 104 позволяет получать спектры фотоэлектронов 1s-уровней элементов С, N, O, F с разрешением 1,0-1,2 эВ.
В последние два десятилетия интервал энергии фотонов от 40 до 1200 эВ заполнили источники синхротронного излучения. Электроны, движущиеся по круговой траектории с релятивистскими скоростями, излучают непрерывный спектр в очень узком конусе, направленном по касательной к электронной орбите. Для выделения нужной энергии фотонов используют монохроматоры. Источники синхротронного излучения расширили возможности метода ФЭС, поскольку появилась возможность: 1) исследовать для одного образца с высоким разрешением как валентные, так и внутренние уровни;
2) исследовать зависимость сечений ионизации уровней от энергии фотонов;
3) исследовать угловую
зависимость выхода электронов
по линейной поляризации
Ионизационная кювета изготовляется так, чтобы обеспечить оптимальное давление исследуемого пара в кювете (10-1 - 10- 2 мм рт.ст.) при давлении в области анализатора электронов 10- 6 мм рт.ст. и давлении гелия в источнике излучения 1 мм рт.ст. Необходимые перепады давления достигаются использованием длинного тонкого капилляра для ввода излучения в кювету и тонкой щели для вывода фотоэлектронов.
Энергоанализатор электронов - центральная часть любого электронного спектрометра. В первых экспериментальных установках, созданных авторами работ [6, 7], были использованы светосильные и простые в изготовлении цилиндрические коаксиальные анализаторы с задерживающим электростатическим полем. Но разрешающая сила таких анализаторов сравнительно низкая (Е / ΔE < 200). В большинстве современных серийных спектрометров высокая разрешающая сила энергоанализаторов (Е / DE ~ 104-105) достигается пропусканием электронов через диспергирующее электростатическое поле, в котором отклонение является функцией энергии электрона. В приведенной на рис. 5 схеме отечественного анализатора отклоняющее поле создается между двумя концентрическими полусферами. Для записи всего спектра ступенчато изменяется потенциал между обкладками конденсатора либо между выходной щелью ионизационной кюветы и входной щелью анализатора.
Детекторами электронов в современных спектрометрах с отклоняющими электростатическими анализаторами служат открытые вторичные электронные умножители, изготовленные из стеклянной трубки в виде спирали. Обработка по специальной технологии внутренней поверхности трубки (канала) позволяет достигать коэффициент усиления 107. Для сокращения времени записи спектров в последнее десятилетие вместо одноканального умножителя в некоторых спектрометрах применяют многоканальные умножители. В таких спектрометрах одновременно записывается участок спектра.
Вакуумная система спектрометров, включающая диффузионные и форвакуумные насосы, обеспечивает в области анализатора электронов остаточное давление 10- 6 мм рт.ст., при котором средняя длина свободного пробега электронов много больше размеров спектрометра.
Система управления
и первичной обработки
ЗАКЛЮЧЕНИЕ
Несмотря на ограничения, обусловленные нарушением одноэлектронного приближения при фотоионизации глубоких валентных уровней, метод ФЭС на сегодняшний день занимает ведущее место среди методов изучения электронной структуры атомов, молекул и твердых тел.
За последние три десятилетия методом УФЭС изучено в газовой фазе около 5000 атомов, молекул и комплексов. Орбитальные энергии ионизации, интенсивности и тонкая структура полос позволили исследовать такие важные вопросы теории электронных оболочек молекул, как эффективность взаимодействия фрагментов молекул, электронные эффекты замещений, в том числе роль индуктивного и мезомерного эффектов, орбитальную природу ковалентных донорно-акцепторных связей и др. Основные результаты исследований методом ФЭС электронной структуры простых молекул элементоорганических, органических и комплексов рассмотрены в монографиях [3, 4].
ЛИТЕРАТУРА
1. Вилков Л.В., Пентин Ю.А. Физические методы исследования в химии: Структурные методы и оптическая спектроскопия. М.: Высш. шк., 1987.
2. Вилков Л.В., Пентин Ю.А. Физические методы исследования в химии: Резонансные и электрооптические методы. М.: Высш. шк., 1989.
3. Нефедов В.И., Вовна В.И. Электронная структура химических соединений. М.: Наука, 1987.
4. Вовна В.И. Электронная структура органических соединений по данным фотоэлектронной спектроскопии. М.: Наука, 1991.
5. Мазалов Л.Н. Рентгеновские спектры и химическая связь. Новосибирск: Наука, 1982.
6. Вилесов Ф.И., Курбатов Б.Л., Теренин А.Н. // Докл. АН СССР. 1961. Т. 138, № 6. C. 132.