Автор работы: Пользователь скрыл имя, 23 Января 2013 в 12:03, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Биохимия".
Если фермент – олигомерный белок, то изоформы могут получаться в результате различной комбинации протомеров. Например, лактатдегидрогеназа состоит из 4-х субъединиц. Н – субъединицы сердечного типа, М – мышечного. Может быть 5 комбинаций этих субъединиц, а, следовательно, и 5 изоферментов: НННН (ЛДГ1 – в сердечной мышце), НННМ (ЛДГ2), ННММ (ЛДГ3), НМММ (ЛДГ4), ММММ (ЛДГ5 – в печени и мышцах). [рис. эти 4 буквы в кружочки.
Надо отличать изоферменты от множественных форм ферментов. Множественные формы ферментов – это ферменты, которые модифицированы после своего синтеза, например фосфорилаза A и B.
Общие черты ферментов
и небиологических
1) и те, и другие
катализируют только
2) увеличивают скорость реакции;
3) не меняют направления реакции;
4) в ходе реакции не расходуются;
5) для обратимых
процессов катализируют как
Особые свойства ферментов:
1) высокая каталитическая активность. Металлы увеличивают скорость реакции в тысячи раз, а ферменты в миллионы раз. Например, уреаза ускоряет скорость реакции в 1014 раз. Каталаза ускоряет распад H2O2 в 1 млдр. раз! 2H2O2 ®2H2O +O2. Без катализатора выделения кислорода не видно. Металлический катализатор увеличивает скорость реакции в 1000 раз, а при добавлении каталазы – бурное вспенивание.
2) специфичность действия – наиболее характерная черта. Строение активного центра фермента, катализирующего реакции, различна. Структура активного центра фермента комплементарна структуре его субстрата, поэтому фермент из множества веществ присоединяет только свой субстрат – субстратная специфичность фермента.
Каждый фермент катализирует не любое превращение субстрата, а какое либо одно – специфичность пути превращения. Например, на АК ГИС действуют 2 фермента: гистидаза (отщепляет NH3) и гистидиндекарбоксилаза (отщепляет CO2).
Выделяют несколько видов специфичности:
а) абсолютная специфичность. Фермент действует только на один единственный субстрат. Пр.: уреаза разрушает мочевину: NH2-CO-NH2® (над стрелкой уреаза, под – вода) 2NH3+ CO2. Аргиназа катализирует распад аргинина.
б) групповая специфичность. Фермент действует на определённую связь в разных субстратах. Пр.: пептидазы разрывают пептидные связи [-NH-CH(R)-CO--NH-CH(R)-CO-]. Пепсин действует только на связи, образованные карбоксильной группой ароматических АК (ФЕН, ТИР, ТРИ). Эстеразы разрывают сложно-эфирную связь [-CO-NH-] в различных липидах. Гликозидазы действуют на гликозидную связь. Действие ферментов, обладающих групповой специфичностью, позволяет организму содержать небольшое количество ферментов.
в) стереоспецифичность. Фермент действует на определённый стереоизомер (D- и L-, цис- и транс-). Пр.: бутен-2-диовая кислота имеет 2 стереоизомера: транс-изомер или фумаровая к-та, и цис-изомер или малеиновая кислота.
Фумараза действует на фумаровую к-ту с превращением последней в яблочную.
В стереоспецифичности выделяют оптическую специфичность – избирательное действие ферментов на оптические изомеры. Например, под действием ЛДГ разрушается только L-форма молочной к-ты.
3) Влияние температуры (правило Вант-Гоффа). При увеличении температуры на 10 градусов скорость реакции увеличивается в 1,5-2 раза. Но для фермента это правило действует только до 40 градусов, т.к. дальше наступает тепловая денатурация фермента. Большинство ферментов в организме человека имеет оптимальную температуру 25-40 градусов [рис. графика: по оси х – температура, по у – процент активности. Рисуем горочку, оптимум – на 37-40°С].
Повышение активности фермента при увеличении температуры объясняется увеличением кинетической энергии реагирующих молекул, что приводит к увеличению числа столкновений между молекулами. При дальнейшем повышении температуры энергия становится чрезмерной, и внутри молекулы разрываются слабые связи – водородные, гидрофильные взаимодействия; происходит нарушение вторичной, третичной, четвертичной структуры фермента.
Ряд ферментов термостабильны, например, гликопротеины.
4) Влияние рН. Для поддержания третичной или четвертичной структуры фермента часто может быть необходимо наличие заряда на группе, удаленной от области связывания субстрата. Если же заряд этой группы меняется, то может происходить частичное развертывание белковой цепи, или компактизация, или диссоциация (олигомерные белки). Поэтому при отклонении рН от оптимального значения, фермент может потерять свою нативную структуру, в результате чего не происходит полноценного связывания активного центра с субстратом. Также при изменении рН может происходить изменение заряда на субстрате.
[рис. график. По х – рН, по у – процент активности. Рисуем горочку.]
Пепсин – 1.5-2, амилаза слюны - 6.8-7.2, трипсин - 7.5-8.6. Для большинства ферментов оптимум рН лежит в среде, близкой к нейтральной.
5) Скорость ферментативной
реакции прямо пропорциональна
кол-ву фермента (для небиологических
катализаторов такой
6) Ферменты являются
регулируемыми катализаторами. Так
под действием различных
Согласно международной классификации, принятой в 1961 году, все ферменты делятся на 6 классов по типу катализируемой реакции. Каждый класс делится на несколько подклассов. Классы:
1. оксидоредуктазы;
2. трансферазы;
3. гидралазы;
4. лиазы;
5. изомеразы;
6. лигазы (синтетазы).
1. Оксидредуктазы – ферменты, катализирующие окислительно-восстановительные реакции. Известно 480 этих ферментов, которые делятся на 17 подклассов.
а) аэробные дегидрогеназы (оксидазы). Отщепляют водород от субстрата и переносят его на молекулу кислорода. Пр.: НАДФН2+О2= Н2О2+НАДФ.
Если кислород непосредственно внедряется в субстрат, то ферменты – оксигеназы. Наибольшее значение имеют оксидазы аминокислот.
б) анаэробные дегидрогеназы – катализируют перенос водорода от субстрата на любой другой акцептор, кроме кислорода.
CH3CH2OH → СН3СН=О
[над стрелочкой алкоголь-ДГ; под стрелочкой НАД → НАДН2 ; этанол превращается в этаналь]
в) цитохромы – это ферменты, переносящие электроны.
г) пероксидазы – гемсодержащие оксидоредуктазы. Они отщепляют водород от субстрата и переносят его на Н2О2.
Пр.: каталазная реакция
2Н2О2 → 2Н2О+О2 [над стрелочкой - каталаза].
2. Трансферазы – ферменты, переносящие группы атомов от одного субстрата к другому. При этом один субстрат донор, а другой – акцептор. В зависимости от природы переносимых групп трансферазы делят на 8 подклассов:
- аминотрансферазы, переносят NH2;
- метилтрансферазы, переносят CH3;
- фосфотрансферазы, переносят PO3H2;
- ацилтрнсферазы.
Пр. переаминирование. [рис. Аланин
+ альфакетоглутаровая кислота
3. Гидролазы – ферменты, катализирующие разрыв одинарных связей с участием воды, присоединяемой по месту разрыва связи. Т.е. они принимают участие в реакциях гидролиза. Все ферменты пищеварительного тракта относятся к гидролазам. Всего выделяют 460 гидролаз. В зависимости от типа разрываемых связей выделяют 11 подклассов:
- эстеразы – разрывают сложно-эфирную связь. Пр.: триацилглицерид+ 3H2O=(липаза) глицерин+ 3С17H35COOH [рис. этого. Стрелочкой показать сложноэфирные связи]
- пептидазы – разрывают пептидную связь. Пр.: АЛА-ГЛИ+ H2O = (дипептидаза) АЛА+ГЛИ [рис. этого. Стрелочкой показать пептидную связь]
- гликозидазы – разрывают гликозидные связи. Пр.: мальтоза+ H2O=(мальтаза) 2глюкозы [рис. этого. Стрелочкой показать гликозидную связь]
4) Лиазы. Эти ферменты осуществляют разрыв углеродных связей без участия воды. Выделяют:
- декарбоксилазы – катализируют отщепление CO2. Пр.:
- альдолазы – катализируют расщепление связи между атомами углерода. Пр.: фруктозо-1,6-дифосфат (6 атомов С)= (альдолаза) фосфоглицериновый альдегид (3 атома С)+ дигидроксиацетонфосфат (3 атома С).
- гидратазы – разрыв двойной связи с присоединением воды по месту разрыва двойной связи.
- ферменты, отщепляющие воду – реакция дегидратации. При этом образуется двойная связь.
5) Изомеразы – ферменты, катализирующие реакции изомеризации и обеспечивающие внутримолекулярную перестройку.
6) Лигазы (синтетазы) – катализируют образование более сложных веществ из более простых. При этом требуется энергия из вне. Обязательно участие АТФ или других трифосфатов (УТФ, ЦТФ и т.д.). [Пр. Аспарагиновая к-та + аммиак + АТФ под действием аспарагинсинтетазы превращается в аспарагин + АМФ + неорганический фосфат +энергия].
1) Существует
тривиальная номенклатура –
2) Рабочая номенклатура
– название фермента
3) Систематическая, научная - L-лактат-НАД-оксидредуктаза.
4) Все ферменты имеют цифровой шифр, например ЛДГ - 1.1.1.27.
Первая цифра говорит о типе катализируемой реакции, указывая на номер класса.
Вторая уточняет действие фермента – номер подкласса.
Третья указывает природу разрываемой связи в молекуле субстрата - подподкласс.
Четвёртая – порядковый номер фермента.
Современные представления о ферментативном катализе
Первая теория ферментативного катализа была выдвинута в начале 20 века Варбургом и Бейлисом. Эта теория предлагала считать, что фермент адсорбирует на себе субстрат, и называлась адсорбционной, но развития она не получила.
В основу современной теории положена теория Михаэлеса и Ментена. Ведущую роль в механизме ферментативного катализа играет образование фермент-субстратного комплекса. По этой теории весь процесс катализа можно разделить на 3 этапа:
[рис. E+S«ES®ES*®ES**®EP®E+P]
1 этап: образование
фермент-субстратного
2 этап: (на рис. от ES до EP включительно) происходит последовательное преобразование первичного фермент-субстратного комплекса в 1 или несколько активированных. Эта стадия наиболее медленна, ее длительность зависит от величины энергии активации данной реакции. В эту стадию происходит разрыв старых связей и образование новых, при этом энергия активации значительно снижается. По продолжительности эта стадия является лимитирующей для всего процесса.
На этой стадии проявляется эффект вынужденного соответствия – эффект «дыбы»: субстрат под действием фермента претерпевает изменения, делающие его более доступным для воздействия каталитического участка активного центра фермента. Одновременно с этим происходит изменение конформации фермента в большей степени в активном центре.
3 этап: отделение продуктов от активного центра фермента и диффузия их в окружающую среду. Эта стадия непродолжительна, ее скорость определяется скоростью диффузии продуктов в окружающую среду.
[график: по оси х – ход реакции, по у – энергия активации; рисуем горизонтальную прямую от середины оси у, затем горочку и окускаемся ниже прямой. пририсовываем меньшую горочку пунктиром]
1) Эффект концентрирования
– это адсорбирование на
2) Эффект ориентации
– это специфическое