Автор работы: Пользователь скрыл имя, 17 Января 2013 в 16:23, шпаргалка
2. Общая характеристика галогенов. Нахождение в природе. Получение и свойства
3. Водородные соединения галогенов и их свойства. Фреоны.
4. Кислородные соединения галогенов. Получение и свойства. Фреоны.
Получающиеся при гидролизе хлора и могут взаимодействовать друг с другом, снова образуя хлор и воду, поэтому реакция не идет до конца; равновесие устанавливается, когда прореагирует приблизительно растворенного хлора. Таким образом, хлорная вода всегда содержит наряду с молекулами значительное количество соляной и хлорноватистой кислот.
Хлорноватистая кислота — очень слабая кислота ( ), более слабая, чем угольная; соли ее называются гипохлоритами. Будучи весьма нестойким соединением, хлорноватистая кислота даже в разбавленном растворе постепенно распадается (см. ниже).
Хлорноватистая кислота — очень сильный окислитель; ее образованием при взаимодействии хлора с водой объясняются белящие свойства хлора. Совершенно сухой хлор не белит, но в присутствии влаги происходит быстрое разрушение красящих веществ образующейся при гидролизе хлора хлорноватистой кислотой.
Если к хлорной воде прибавлять щелочь, то вследствие нейтрализации хлорноватистой и соляной кислот равновесие в системе
сдвигается вправо; реакция практически доходит до конца и получается раствор, содержащий соли хлорноватистой и соляной кислот:
Тот же результат получится, если непосредственно пропускать хлор в холодный раствор щелочи
или в ионно-молекулярной форме:
Полученный таким путем раствор солей хлорноватистой и соляной кислот применяется для беления; его белящие свойства обусловливаются тем, что гипохлорит калия легко разлагается уже при действии диоксида углерода, находящегося в воздухе, причем образуется хлорноватистая кислота:
Последняя и обесцвечивает красящие вещества, окисляя их.
Аналогичный раствор, содержащий
гипохлорит натрия, получается при
пропускании хлора в раствор
гидроксида натрия. Оба раствора можно
получить электролизом растворов хлоридов
калия или натрия, если дать возможность
выделяющемуся хлору
При действии хлора на сухую гашеную известь получается так называемая белильная, или хлорная, известь. Главной ее составной частью является соль , образующаяся согласно уравнению:
Этой соли отвечает структурная формула , согласно которой следует рассматривать как смешанную соль соляной и хлорноватистой кислот.
Хлорная известь представляет собой белый порошок с резким запахом и обладает сильными окислительными свойствами. Во влажном воздухе под действием диоксида углерода она постепенно разлагается, выделяя хлорноватистую кислоту:
При действии на хлорную
известь соляной кислоты
Хлорная известь применяется
для отбелки растительного
В растворе хлорноватистая кислота испытывает три различных типа превращений, которые протекают независимо друг от друга:
Изменяя условия, можно добиться
того, что реакция пройдет
Под действием прямого солнечного света и в присутствии некоторых катализаторов или восстановителей разложение хлорноватистой кислоты протекает согласно уравнению (1).
Реакция (2) идет в присутствии водоотнимающнх средств, например . В результате реакции получается оксид (хлорноватистый ангидрид) , представляющий собой крайне неустойчивый желто-бурый газ с запахом, похожим на запах хлора.
Распад согласно реакции (3) особенно легко идет при нагревании. Поэтому, если пропускать хлор в горячий раствор гидроксида калия, то вместо сразу получается :
Продуктами реакции являются хлорид калия и хлорит калия — соль хлорноватой кислоты . Поскольку хлорат калия (или бертолетова соль) мало растворим в холодной воде, то при охлаждении раствора он выпадает в осадок.
Соответствующая хлоратам хлорноватая кислота известна только в виде водного раствора с концентрацией не выше . Она проявляет свойства сильной кислоты (приблизительно равной по силе и ) и сильного окислителя. Так, концентрированные ее растворы воспламеняют дерево.
В противоположность свободной , у хлоратов окислительные свойства в растворе выражены слабо. Большинство из них хорошо растворимы в воде; все они ядовиты. Наибольшее применение из хлоратов находит , который при нагревании легко разлагается. В присутствии (в качестве катализатора) разложение в основном протекает согласно уравнению:
С различными горючими веществами (серой, углем, фосфором) образует смеси, взрывающиеся при ударе. На этом основано его применение в артиллерийском деле для устройства запалов. Хлорат калия употребляется в пиротехнике для приготовления бенгальских огней и других легко воспламеняющихся смесей. Главный же потребитель хлората калия — спичечная промышленность. В головке обычной спички содержится около .
Ангидрид хлорноватой кислоты неизвестен. При действии концентрированной серной кислоты вместо него выделяется желто-бурый газ с характерным запахом — диоксид (или двуокись) хлора . Это очень неустойчивое соединение, которое при нагревании, ударе или соприкосновении с прочими веществами легко разлагается со взрывом на хлор и кислород.
Диоксид хлора применяют для отбелки или стерилизации различных материалов (бумажной массы, муки и ).
При взаимодействии с раствором щелочи медленно протекает реакция
с образованием солен двух кислот — хлорноватой и хлористой .
Хлористая кислота мало устойчива. По силе и окислительной активности она занимает промежуточное положение между и . Соли хлориты используются при отбелке тканей.
При осторожном нагревании хлората калия без катализатора его разложение протекает в основном согласно схеме:
Образующийся перхлорат калия очень мало растворим в воде и поэтому может быть легко выделен.
Действием концентрированной серной кислоты на может быть получена свободная хлорная кислота , представляющая собой бесцветную, дымящую на воздухе жидкость.
Безводная малоустойчива и иногда взрывается при хранении, но ее водные растворы вполне устойчивы. Окислительные свойства выражены слабее, чем у , а кислотные свойства— сильнее. Хлорная кислота — самая сильная из всех известных кислот.
Соли , за немногими исключениями, к которым относится и , хорошо растворимы и в растворе окислительных свойств не проявляют.
Если нагревать хлорную кислоту с , отнимающим от нее воду, то образуется оксид , или хлорный ангидрид,
Оксид - маслянистая жидкость, кипящая с разложением при . При ударе или при сильном нагревании взрывается.
Изменение свойств в ряду кислородных кислот хлора можно выразить следующей схемой:
С увеличением степени окисленности хлора устойчивость его кислородных кислот растет, а их окислительная способность уменьшается. Наиболее сильный окислитель — хлорноватистая кислота, наименее сильный — хлорная кислота.
Напротив, сила кислородных кислот хлора возрастает с увеличением его степени окисленности. Из всех гидроксидов хлора самая слабая кислота — хлорноватистая, самая сильная — хлорная. Такая закономерность — усиление кислотных свойств гидроксида , соответственно, ослабление его основных свойств) с ростом степени окисленности элемента характерна не только для хлора, но и для других элементов. В первом приближении эту закономерность можно объяснить, рассматривая все химические связи в молекулах гидроксидов как чисто ионные.
На рис. 108 схематически изображена часть молекулы гидроксида , составленная из -зарядного иона , иона кислорода и иона водорода (протона) . Диссоциация этой части молекулы на ионы может происходить либо с разрывом связи (в результате чего отщепляется ), либо с разрывом связи (что приводит к отщеплению иона ); в первом случае гидроксид будет проявлять свойства основания, во втором — свойства кислоты.
Каждый из возможных путей диссоциации гидроксида будет осуществляться тем легче, чем слабее связь между соответствующими ионами. При возрастании степени окисленности элемента увеличится заряд иона , что усилит его притяжение к иону и тем самым затруднит диссоциацию гидроксида по типу основания.
Рис. 108. Ионная схема фрагмента молекулы гидроксида
Вместе с тем усилится взаимное отталкивание одноименно заряженных ионов и , что облегчит диссоциацию по кислотному типу. Таким образом, с увеличением степени окисленности элемента усиливаются кислотные свойства и ослабевают основные свойства образуемого этим элементом гидроксида.
Увеличение радиуса иона при неизменном его заряде приведет к возрастанию расстояний между центром этого иона и центрами ионов и . В результате взаимное электростатическое притяжение ионов и станет более слабым, что облегчит диссоциацию по основному типу; одновременно уменьшится взаимное отталкивание ионов и , так что диссоциация по кислотному типу затруднится. Следовательно, с возрастанием радиуса иона элемента (при неизменном его заряде) усиливаются основные свойства и ослабляются кислотные свойства образуемого этим элементом гидроксида. Примером проявления этой закономерности может служить изменение констант кислотной диссоциации в ряду .
Разумеется, предположение о чисто ионной природе химических связей в молекулах гидроксидов является весьма грубым. В действительности связь имеет преимущественно ковалентный характер, а связь можно считать близкой к ионной только для щелочных металлов. Кроме того, изложенная трактовка кислотно-основных свойств гидроксидов не учитывает особенностей взаимодействия ионов и с молекулами растворителя (воды). Поэтому рассмотренная схема влияния заряда и размеров иона на характер диссоциации молекулы не может служить основой для количественной оценки кислотноосновных свойств гидроксидов. Однако при сопоставлении кислотно-основных свойств различных гидроксидов, образуемых данным элементом в разных состояниях его окисленности, или при сопоставлении свойств аналогичных гидроксидов, образуемых элементами одной и той же подгруппы периодической системы, эта схема в большинстве случаев приводит к правильным качественным выводам.
Кислородные соединения брома и иода. Растворы бромноватистой (НОВг) и иодноватистой (HOI) кислот могут быть получены, подобно хлорноватистой кислоте, взаимодействием соответствующих галогенов с водой
причем в ряду равновесие все в большей степени смещается влево.
При переходе от к НОВг и HOI устойчивость и окислительная активность кислот уменьшаются. По этому же ряду ослабляются и кислотные свойства (см. выше). Иодноватистая кислота HOI является уже амфотерным соединением, у которого основные свойства несколько преобладают кислотными.
Бромноватую и йодноватую кислоты можно получить путем окисления бромной или йодной воды хлором:
Бромноватая кислота очень похожа по свойствам на , а окислительные и кислотные свойства выражены значительно слабее.
Иодноватая кислота представляет собой бесцветные кристаллы, вполне устойчивые при комнатной температуре. При осторожном нагревании ее до можно получить порошок оксида , или йодноватого ангидрида — :
Йодноватый ангидрид проявляет окислительные свойства, а при нагревании выше распадается на и кислород.
До недавнего времени
считали, что бром не образует соединений,
в которых его степень
О свойствах бромной кислоты и ее солей пока известно мало. Напротив, йодная кислота и ее соли (периодаты) хорошо изучены.
Сама кислота может быть получена действием иода на
или электролизом раствора :
Из раствора йодная кислота выделяется в виде бесцветных кристаллов, имеющих состав . Этот гидрат следует рассматривать как пятиосновную кислоту (ортоиодную), так как в нем все пять атомов водорода могут замещаться металлами с образованием солей (например, ). Йодная кислота — слабая, но более сильный окислитель, чем .
Оксид иода (VII) не получен.
6.