Автор работы: Пользователь скрыл имя, 14 Декабря 2013 в 20:49, лекция
Углеводы — это альдо- или кето-производные многоатомных спиртов. Сахара, имеющие в своем составе альдогруппу , называют альдозами, а имеющие в составе кетогруппу — кетозами.
К альдосахарам относятся рибоза, глюкоза, манноза, галактоза и др.:
К сахарам, имеющим кетогруппу, относятся рибулоза и фруктоза:
Важнейшие химические свойства углеводов обусловливаются присутствием в их молекуле именно этих групп.
Характеристика b – амилазы
b – амилаза находится в зерне пшеницы, ржи, ячменя, в соевых бобах, в батате. Однако активность фермента в созревших семенах и плодах низкая, возрастает активность при прорастании семян.
β-амилаза расщепляет амилозу полнотью, на 100% превращая ее в мальтозу. Амилопектин расщепляет на мальтозу и декстрины дающие красно-коричневое окрашивание с йодом, расщепляя лишь свободные концы глюкозных цепочек. Действие прекращается, когда доходит до разветвлений. β-амилаза расщепляет амилопектин на 54% с образованием мальтозы. Образовавшиеся при этом декстрины гидролизуются α-амилазой с образованием декстринов меньшей молекулярной массы и не дающих окрашивания с йодом. При последующем длительном действии α-амилозы на крахмал около 85% его превращается в мальтозу.
Т.е. при действии β-амилазы образуются в основном мальтоза и немного высокомолекулярных декстринов. При действии α-амилазы образуются главным образом декстрины меньшей молекулярной массы и незначительное количество мальтозы. Ни α- ни β-амилазы в отдельности не могут полностью гидролизовать крахмал с образованием мальтозы. При одновременном действии обеих амилаз крахмал гидролизуется на 95%.
Продукты гидролиза крахмала
В качестве конечных продуктов гидролиза амилозы обычно образуется не только мальтоза, но и глюкоза, а при гидролизе амилопектина- мальтоза, глюкоза и небольшое количество олигосахаридов, содержащих α І®6 – гликозидную связь. Гликозидная связь α І®6 гидролизуетя R – ферментом. Основным продуктом, образующимся при гидролизе амилозы и амилопектина, является мальтоза. Далее мальтоза под действием α – глюкозидазы (мальтазы) гидролизуется до D- глюкозы.
Препараты амилаз широко применяют в хлебопечении в качестве улучшителей. Добавление амилаз приводит к образованию более мягкого хлебного мякиша и уменьшает скорость черствения хлеба при хранении.
7.3.1.2 Гликоген и фитогликоген (растительный гликоген) содержится в зерне кукурузы. По строению фитогликоген близок к запасному полисахариду животных организмов — гликогену, получившему название животного крахмала. Фитогликоген также как и животный гликоген имеет более высокую степень ветвления, чем амилопектин, около 10 % его связей — это a1 ® 6 связи, тогда как у амилопектина таких связей около 5 %.
7.3.1.3 Инулин относится к запасным полисахаридам растений. Он представляет группу молекулярных форм приблизительно одинакового размера.
Инулин как запасной полисахарид откладывается в подземных запасающих органах растений — в клубнях топинамбура, георгина, корневищах артишока. Причем в качестве энергетического запаса вещества он предпочтительнее крахмала.
Близкое к инулину строение имеет другой запасной полисахарид — леван. Число моносахаридных остатков у левана равно 7…8.
7.3.1.4 Леваны – это временные запасные полисахариды злаковых растений. Они обнаружены в листьях, стеблях и корнях растений и расходуются в период созревания зерна на синтез крахмала. Как и инулин, леван содержит концевой остаток сахарозы. Полисахаридная цепь инулина и левана не имеет восстанавливающих концов — их аномерные углеродные атомы заняты в образовании гликозидной связи.
Из других запасных полисахаридов известны галактоманнаны в семенах сои, глюкоманнаны, откладываемые в запас некоторыми растениями тропиков, но химическая структура их полностью не установлена.
7.3.2 Структурные полисахариды
7.3.2.1 Целлюлоза (С6Н10О5) – полисахарид второ-го порядка, является основным компонентом клеточных стенок. Целлюлоза состоит из остатков b-D-глюкозы, соединенных между собой b1 ® 4 гликозидной связью (рис. 9, а). Среди других полисахаридов, из которых состоит клеточная стенка растений, он относится к микрофибриллярным полисахаридам, так как в клеточных стенках молекулы целлюлозы соединены в структурные единицы, получившие название микрофибрилл. Последняя состоит из пучка молекул целлюлозы, расположенных по ее длине параллельно друг другу.
Строение целлюлозы
Рис. 9. Строение целлюлозы
а – соединение молекул глюкозы; б – структура микрофибрилл; в – пространственная структура
Распространение целлюлозы
Содержание целлюлозы в растениях колеблется в широких пределах: в волокнах хлопчатника 90 %, древесине 50, листьях табака 10, семенах злаковых культур 3…5, подсолнечника 2, ягодах винограда 1 %.
В среднем на одну молекулу целлюлозы приходится около 8000 остатков глюкозы. Гидроксилы у атомов углерода С2, С3 и С6 не замещены. Повторяющееся звено в молекуле целлюлозы — остаток дисахарида целлобиозы.
Свойства целлюлозы
Целлюлоза не растворяется в воде, но в ней набухает. Свободные гидроксильные группы способны замещаться на радикалы — метильный —СН3 или ацетальный с образованием простой или сложноэфирной связи. Это свойство играет большую роль при изучении строения целлюлозы, а также находит применение в промышленности при производстве искусственного волокна, лаков, искусственной кожи и взрывчатых веществ.
Усвояемость целлюлозы
У большинства животных и человека целлюлоза не переваривается в желудочно-кишечном тракте, так как в их организме не вырабатывается целлюлаза — фермент, гидролизующий b1 ® 4 гликозидную связь. Этот фермент синтезируется различного рода микроорганизмами, вызывающими гниение древесины. Целлюлозу хорошо переваривают термиты, потому что в их кишечнике живут симбиотические микроорганизмы, вырабатывающие целлюлазу.
В кормовые рационы крупного рогатого скота включают целлюлозу (в составе соломы и других компонентов), так как в их желудке находятся микроорганизмы, синтезирующие фермент целлюлазу.
Значение целлюлозы
Промышленное значение
целлюлозы огромно —
7.3.2.2 Гемицеллюлозы — полисахариды второго порядка, образующие вместе с пектиновыми веществами и лигнином матрикс клеточных стенок растений, заполняющий пространство между каркасом стенок, сложенных из целлюлозных микрофибрилл.
Гемицеллюлозы подразделяют на три группы:
1. Ксиланы;
2. Маннаны;
3. Галактаны.
1. Ксиланы образованы остатками D-ксилопиранозы, соединенными связями b1 ® 4 в линейную цепь. Семь из каждых десяти ксилозных остатков ацетилированы по С3 и редко по С2. К некоторым ксилозным остаткам присоединена 4-о-метил-a-D-глюкуроновая кислота через гликозидную a1 ® 2 связь.
2. Маннаны состоят из основной цепи, образованной из b-D-маннопиранозных и b-D-аминопиранозных остатков, связанных гликозидными b1 ® 4 связями. К некоторым остаткам маннозы основной цепи b1 ® 6 связями присоединены единичные остатки b-D-галактопиранозы. Гидроксильные группы при С2 и С3 некоторых остатков маннозы ацетилированы.
3. Галактаны состоят из b-галактопиранозных остатков, соединенных b1 ® 4 связями в основную цепь. К ним по С6 присоединены дисахариды, состоящие из D-галактопиранозы и L-арабофуранозы.
7.3.2.3 Пектиновые вещества представляют собой группу высокомолекулярных полисахаридов, которые вместе с целлюлозой, гемицеллюлозой и лигнином образуют клеточные стенки растений.
Строение пектиновых веществ
Основным структурным компонентом пектиновых веществ служит галактуроновая кислота, из которой строится главная цепь; в состав боковых цепей входят арабиноза, галактоза и рамноза. Часть кислотных групп галактуроновой кислоты этерифицирована метиловым спиртом (рис. 10), т.е. мономером является метоксигалактуроновая кислота. В метоксиполигалактуроновой цепи мономерные звенья связаны a1 ® 4 гликозидными связями, боковые цепи (разветвления) присоединены к главной цепи a1 ® 2 гликозидными связями.
Пектиновые вещества сахарной свеклы, яблок, плодов цитрусовых растений различаются между собой по составу боковых цепей полигалактуроновой цепи и по физическим свойствам.
В зависимости от коли-чества метоксильных групп и степени полимеризации разли-чают высоко- и низкоэтери-фицированные пектины. У первых этерифицировано бо-лее 50 %, у вторых — менее 50 % карбоксильных групп.
Пектиновые вещества — это физические смеси пектинов с сопутствующими веществами — пентозанами и гексозанами. Молекулярная масса пектина от 20 до 50 кДа.
Содержание пектиновых веществ
Содержание пектиновых веществ в растительном сырье колеблется от 0,5 до 1,5 % и более: в яблоках от 0,8 до 1,3 %, в абрикосах около 1,0, в черной смородине около 1,5, в моркови и сахарной свекле около 2,5 %.
Различают яблочный пектин, который получают из яблочных выжимок, цитрусовый пектин — из цитрусовых корочек и выжимок, свекловичный пектин — из свекловичного жома. Богаты пектиновыми веществами айва, красная смородина, кизил, алыча и другие плоды и ягоды.
В растениях пектиновые вещества присутствуют в виде нерастворимого протопектина, связанного с арабаном или ксиланом клеточной стенки. Протопектин переходит в растворимый пектин либо при кислотном гидролизе, либо под действием фермента протопектиназы. Из водных растворов пектин выделяют осаждением спиртом или 50%-ным ацетоном.
Пектиновые кислоты и их соли
Пектиновые кислоты — высокомолекулярные полигалактуроновые кислоты, небольшая часть карбоксильных групп у которых этерифицирована метиловым спиртом. Соли пектиновых кислот называют пектинатами. Если пектин полностью деметоксилирован, то их называют пектовыми кислотами, а их соли — пектатами.
Пектолитические ферменты
Ферменты, участвующие в гидролизе пектиновых веществ называются пектолитическими. Они имеют большое значение, так как способствуют повышению выхода и осветлению плодово-ягодных соков.Пектиновые вещества в растениях обычно содержатся не в свободном виде, а в виде сложного комплекса- протопектина. В этом комплексе метоксилированная полигалактуроновая кислота связана с другими углеводными компанентами клетки – арабаном и галактаном. Под действием фермента протопектиназы происходит отщепление арабана и галактана от протопектина. В результате действия этого фермента образуется метоксилированная полигалактуроновая кислота, или растворимый пектин. Растворимый пектин далее расщепляется другими пектолитическими ферментами.
При действии фермента пектинэстеразы на растворимый пектин гидролизуются сложноэфирные связи, в результате чего образуется метиловый спирт и полигалактуроновая кислота, т. е. пектинэстераза отщепляет метоксильные группы метоксиполигалактуроновой кислоты.
Фермент полигалактуроназа при действии на растворимый пектин расщепляет связи между теми участками полигалактуроновой кислоты, которые не содержат метоксильных групп.
Технологическое и физиологическое значение
Важное свойство пектиновых веществ — способность их к желированию, т. е. образовывать прочные студни в присутствии большого количества сахара (65…70 %) и при рН 3,1…3,5. В образующемся студне массовая доля пектина составляет от 0,2 до 1,5 %.
Пектиновые вещества способны образовывать также при соответствующей обработке гели — в присутствии перекиси водорода и пероксидазы происходит перекрестная «сшивка» боковых цепей; в присутствии кислоты и сахара, а также солей кальция пектины также образуют гели с высокой водопоглощающей способностью — 1 г пектина может поглотить от 60 до 150 г воды.
Плотные гели образуют только высокоэтерифици-рованные пектины. Частичный гидролиз метиловых эфиров приводит к снижению желирующей способности. При полном гидролизе метоксильных групп в щелочных растворах или под действием фермента пектинэстеразы образуются пектиновые кислоты, которые представляют собой полигалактуроновую кислоту. Полигалактуроновая кислота не способна образовывать желе.
На желирующей способности пектиновых веществ основано использование их в качестве студнеобразующего компонента в кондитерской промышленности для производства конфитюров, мармелада, пастилы, желе, джемов, а также в консервной промышленности, хлебопечении и в производстве сыров.
Пектиновые вещества обладают важными физиологическими свойствами, выводя из организма тяжелые металлы в результате соединения многовалентных ионов металлов с неэтерифицированными группами —СОО– по типу ионных связей.