Автор работы: Пользователь скрыл имя, 18 Октября 2013 в 17:36, реферат
№ 1. СПЕЦИФИКАЦИЯ МОДЕЛИ
Простая регрессия представляет собой регрессию между двумя переменными —у и х, т.е. модель вида , где у — результативный признак; х - признак-фактор.
Множественная регрессия представляет собой регрессию результативного признака с двумя и большим числом факторов, т. е. модель вида
(1)
Таким образом, d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии. Можно предположить что: , предположим также
Коэффициент автокорреляции остатков определяется как
С учетом (3) имеем:
Таким образом, если в остатках существует полная положительная автокорреляция и , то d= 0. Если в остатках полная отрицательная автокорреляция, то и, следовательно, d= 4.Если автокорреляция остатков отсутствует, то и d = 2. Следовательно, 0≤d≤4
Алгоритм выявления автокорреляции остатков на основе критерия Дарбина — Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные гипотезы Н1 Н1* состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина — Уотсона dl и du для заданного числа наблюдений n, числа независимых переменных модели к и уровня значимости α. По этим значениям числовой промежуток [0;4] разбивают на пять отрезков. Если фактическое значение критерия Дарбина — Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Hо.
№29. ОБЩАЯ ХАРАКТЕРИСТИКА МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ. ИНТЕРПРИТАЦИЯ ПАРАМЕТРОВ МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ.
Величину L, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самих факторных переменных, сдвинутые на один ил более моментов времени, — лаговыми переменными.
Эконометрическое моделирование осуществляется с применением моделей, содержащих не только текущие, но и лаговые значения факторных переменных. Эти модели называются моделями с распределенным лагом. Модель вида
является примером модели с распределенным лагом.
Наряду с лаговыми значениями независимых, или факторных, переменных на величину зависимой переменной текущего периода могут оказывать влияние ее значения в прошлые моменты или периоды времени. Эти процессы обычно описывают с помощью моделей регрессии, содержащих в качестве факторов лаговые значения зависимой переменной, которые называются моделями авторегрессии. Модель вида
относится к моделям авторегрессии. Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в-третьих, между моделями с распределенным лагом и моделями авторегрессии существует определенная взаимосвязь, и в некоторых случаях необходимо осуществлять переход от одного типа моделей к другому. Интерпретация параметров моделей с распределительным лагом. Рассмотрим модель с распределенным лагом в ее общем виде в предположении, что максимальная величина лага конечна:
Эта модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной х, то это изменение будет влиять на значения переменной у в течение l следующих моментов времени.
Коэффициент регрессии b0 при переменной xt характеризует среднее абсолютное изменение уt при изменении хt на 1 ед. своего измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора x. Этот коэффициент называют краткосрочным мультипликатором.
В момент (t+1) совокупное воздействие факторной переменной xt на результат уt , составит (b0 + b1) усл. ед., в момент (t+2) это воздействие можно охарактеризовать суммой (b0+b1+b2) и т. д. Полученные таким образом суммы называют промежуточными мультипликаторами.
Введем следующее обозначение:
b0 +b1 +…+bl =b
Величину b называют долгосрочным мультипликатором. Он показывает абсолютное изменение в долгосрочном периоде t + l результата у под влиянием изменения на 1 ед. фактора х.
Предположим
ßj =bj /b, j=0:1
Назовем полученные величины относительными коэффициентами модели с распределенным лагом. Средний лаг определяется по формуле средней арифметической взвешенной: и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании результата на изменение фактора, тогда как высокое его значение говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени. Медианный лаг — это величина лага, для которого
Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.
№ 30 МЕТОД АЛМОНА.
В методе А. предполагается ,что веса текущих лаговых значений объясняющих переменных подчиняются палениальному распределению. bj = c0 +c1j+ c2j2 +…+ ckjk
Уравнение регрессии примет вид yt = a+c0z0+c1z1+ c2z2 + ckzk +εt , где zi = ; i=1,…,k; j=1,…,p. Расчет параметров модели с распределенным лагом проводится по следующей схеме:
№ 31 МЕТОД КОЙКА.
В распределение Койка
делается предположение, что коэффициенты
при лаговых значениях объясняю
yt=a+b0xt+b0λxt-1+b0λ2xt-2+…+ εt. После несложных преобразований получаем ур-ие оценки параметров исходящего ур-ия.
№ 32 МЕТОД ГЛАВНЫХ КОМПОНЕНТ.
Суть метода — сократить число объясняющих переменных до наиболее существенно влияющих факторов. Метод главных компонент применяется для исключения или уменьшения мультиколлинеарности объясняющих переменных регрессии. Основная идея заключается в сокращении числа объясняющих переменных до наиболее существенно влияющих факторов. Это достигается путем линейного преобразования всех объясняющих переменных xi (i=0,..,n) в новые переменные, так называемые главные компоненты. При этом требуется, чтобы выделению первой главной компоненты соответствовал максимум общей дисперсии всех объясняющих переменных xi (i=0,..,n). Второй компоненте — максимум оставшейся дисперсии, после того как влияние первой главной компоненты исключается и т. д.
№ 33 МОДЕЛИ АВТОРЕГРЕССИИ. ОЦЕНКА ПАРАМЕТРОВ МОДЕЛЕЙ АВТОРЕГРЕССИИ.
Модели содержащие в
качестве факторов лаговые знач. зависимой
переменной называются моделями авторегрессии.
Н-р yt=a+b0xt+c1yt-1+
εt. Как и в модели с распределенным
лагом b0 и в этой модели характеризует
краткосрочные изменения yt под воздействием
изменения х1 на 1 ед. Долгосрочный
мультипликатор в модели авторегрессии
рассчитывается как сумма краткосрочного
и промежуточных мультипликаторов b = b0+b0
c1+b0 c12+b0
c13+…=b0(1+c1+c12+c13+…)=b0/1-
Отметим, что такая
интерпретация коэффициентов
Одним из возможных методов расчета параметров уравнения авторегрессии является метод инструментальных переменных. Сущность этого метода состоит в том, чтобы заменить переменную из правой части модели, для которой нарушаются предпосылки МНК, на новую переменную, включение которой в модель регрессии не приводит к нарушению его предпосылок. Применительно к моделям авторегрессии необходимо удалить из правой части модели переменную yt-1. Искомая новая переменная, которая будет введена в модель вместо yt-1ь должна иметь два свойства. Во-первых, она должна тесно коррелировать с yt-1ь во-вторых, она не должна коррелировать с остатками ur.
Еще один метод, который можно применять для оценки параметров моделей авторегрессии типа — это метод максимального правдоподобия
№34 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. ????????????????????
№ 35 МЕТОД
ПОДВИЖНОГО (СКОЛЬЗЯЩЕГО) СРЕДНЕГО.
Метод простого скользящего ср. состоит в том, что расчет показателя на прогнозируемый момент времени строится путем усреднения значения этого показателя за несколько предшествующих моментов времени.
где хk-i – реальное знач. показателя в момент времени tn-1.
n- число предшествующих моментов времени использующих при расчете.
fk – прогноз на момент времени tk.
№ 36 МЕТОД ЭКСПОНЕНЦИАЛЬНОГО СГЛАЖИВАНИЯ.
Учитываются отклонения предыдущего прогноза от реального показателя а сам расчет проводится по след. формуле:
где xk-1 – реальное значение показателя в момент времени tk-1.
fk – прогноз на момент времени tk.
α – постоянное сглаживание.
Замечание: знач.α подчиняется условию 0‹ α ‹ 1, определяет степень сглаживания и обычно выбирается универсальным методом проб и ошибок.
№ 37 МЕТОД ПРОЕЦИРОВАНИЯ ТРЕНДА.
Основной идеей метода проецирования линейного тренда является построение прямой, которая в среднем наименее уклоняется от массива точек заданного временным рядом. Прямая ищется в виде: x = at + b (a и b -постоянные). Величины a и b удовлетворяют. следующей линейной системе:
№38. КАЗУАЛЬНЫЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ. КАЧЕСТВЕННЫЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ. ????????????????