Автор работы: Пользователь скрыл имя, 31 Марта 2015 в 19:11, дипломная работа
TokenRing — технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» — протокол локальной сети, который находится на канальном уровне (DLL) модели OSI. Он использует специальный трёхбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет его обладателю право передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.
Введение ( тут вроде цифра нужна) – нумерация страницы -----4
1 Стандарты сетей………………….…………………...….…………….………..5
1.1 Ethernet……………………...……………………….………..…………8
1.2 TokenRing…………………..………….………….…..……....………..10
2 Основные характеристики TokenRing……………….………..…..…………..11
2.1 Сетевое оборудование TokenRing….............….……..…..…............13
2.2 Топология………………………………….……………..…......……..15
2.3 Среда передачи……………………………….……………......………17
2.4 Организация функционирования……………………..……...............20
2.5 Передача маркера…………………………………………….………..23
2.6 Физический уровень TokenRing…………………..……....…….........25
3 Форматы кадров Token Ring……………………………..……..……....……...28
3.1 Маркер…………………………………………..……..………….……28
3.2 Кадр данных…………………………………..……..………....….......31
3.3 Прерывающая последовательность……………………..……...….…35
4 Область применения…………………………………....…...………….….…...36
Заключение…………………………………………
Концентраторы могут быть пассивными и активными. Пассивный MSAU обеспечивает только электрическое подключение станции к магистрали. Активный MASU имеет в каждом блоке TCU повторитель, восстанавливающий форму сигнала. Активные концентраторы могут содержать блок управления по SNMP или RMON. Сегментирующие (Portswitch) концентраторы позволяют организовывать несколько колец на одном устройстве.
Сетевые адаптеры содержат блок повторения, который может регенерировать сигнал и восстанавливать его синхронизацию (этим занимается только активный монитор). Для ресинхронизации используется 30-битный буфер, в котором накапливаются сигналы. Этот буфер подключается активным монитором к кольцу, и все данные пропускаются через него, выходя с нужной частотой. (При максимальном количестве станций (260) смещение бита за оборот по кольцу может достигать трех битовых интервалов.)
Технология TokenRing позволяет использовать для магистральных и радиальных кабелей витую пару (UTP или STP) или оптоволокно. Расстояние между пассивными концентраторами может достигать 100 м (STP Type 1) и 45 м (UTP Category 3), а между активными – 730 м и 365 м соответственно. Использование оптоволокна увеличивает максимальную длину каждого сегмента до 1 км. Разные производители оборудования и программного обеспечения определяют различные ограничения, так что при проектировании сети TokenRing необходимо пользоваться данными выбранного производителя.
2.2 Топология сети TokenRing
Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (TokenRing) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.
Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.
Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не вличет за собой отказ сети как в топологии кольцо, потому что концентратор отключет неисправную станцию и замкнет кольцо передачи данных.
В архитектуре TokenRing маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.
Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.
Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен. Преимущества сетей топологии TokenRing:
1) топология обеспечивает равный доступ ко всем рабочим станциям;
2) высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.
Недостатки сетей топологии TokenRing: большой расход кабеля и соответственно дорогостоящая разводка линий связи.
2.3 Среда передачи
Среда передачи – это физическая среда, по которой возможно распространение информационных сигналов в виде электрических, световых и т.п. импульсов. В настоящее время выделяют два основных типа физических соединений: соединения с помощью кабеля и беспроводные соединения.
Технические характеристики среды передачи влияют на такие потребительские параметры сетей как максимальное расстояние передачи данных и максимальная скорость передачи данных.
Кабельные системы
Кабель (cable), используемый для построения компьютерных сетей, представляет собой сложную конструкцию, состоящую, в общем случае, из проводников, изолирующих и экранирующих слоев. В современных сетях используются три типа кабеля:
Каждый тип кабеля отличается от других внутренним устройством и обладает целым набором технических характеристик, влияющих на основные потребительские параметры сетей:
Таблица 1 – типы кабелей
Тип кабеля |
Характеристика | |
Максимальное расстояние передачи |
Максимальная скорость передачи | |
Коаксиальный кабель |
185 – 500 м |
10 Мбит/с |
"Витая пара" |
30 – 100 м |
10 Мбит/с – 1 Гбит/с |
Оптоволоконный кабель |
2 км |
10 Мбит/с – 2 Гбит/с |
Коаксиальный кабель
Коаксиальный кабель был первым типом кабеля, использованным для соединения компьютеров в сеть. Кабель данного типа состоит из центрального медного проводника, покрытого пластиковым изолирующим материалом, который, в свою очередь, окружен медной сеткой и/или алюминиевой фольгой. Этот внешний проводник обеспечивает заземление и защиту центрального проводника от внешней электромагнитной интерференции. При прокладке сетей используются два типа кабеля — "Толстый коаксиальный кабель" (Thicknet) и "Тонкий коаксиальный кабель" (Thinnet). Сети на основе коаксиального кабеля обеспечивают передачу со скоростью до 10 Мбит/с. Максимальная длина сегмента лежит в диапазоне от 185 до 500 м в зависимости от типа кабеля.
Витая пара
Кабель типа витая пара (twistedpair), является одним из наиболее распространенных типов кабеля в настоящее время. Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса — "экранированная витая пара" ("Shieldedtwistedpair") и "неэкранированная витая пара" ("Unshieldedtwistedpair"). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе "витой пары" в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с – 1 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).
Оптоволоконный кабель
Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой. Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.
2.4 Организация функционирования
Каждый узел ЛВС принимает кадр от соседнего узла, восстанавливает уровни сигналов и передает кадр следующему узлу.
Передаваемый кадр может содержать данные (кадр данных) или являться маркером. Маркер - специальный служебный кадр, предоставляющий узлу, который им владеет, право на передачу данных.
Когда узлу необходимо передать кадр, его адаптер дожидается поступления маркера, а затем преобразует его в кадр, содержащий данные, сформированные по протоколу соответствующего уровня, и передает его в сеть. Кадр передается по сети от узла к узлу, пока не достигнет адресата, который установит в нем определенные биты для подтверждения того, что кадр получен адресатом, и ретранслирует его далее в сеть. Пакет продолжает движение по сети до возвращения вузел-отправитель, в котором проверяется правильность передачи. Если кадр был передан адресату без ошибок, узел может сформировать и передать очередной кадр данных (если таковой есть) или передать маркер следующему узлу. Количество кадров данных, которое может быть передано одним узлом, определяется временем удержания маркера, которое обычно составляет 10 мс. По истечении этого времени узел должен отдать маркер другому узлу. Маркер, как и кадр данных, перемещается по кольцу от узла к узлу. Если в узле, получившем маркер, нет данных (кадра) для передачи, то он отправляет маркер к следующему узлу. Если в узле, получившем маркер, имеется кадр для передачи, то сравнивается уровень приоритета этого кадра (узла) со значением, так называемого зарезервированного приоритета, находящимся в поле маркера в виде битов резервирования. Если уровень приоритета кадра равен или больше значения зарезервированного приоритета, то узел захватывает маркер, присоединяет к нему кадр, формируя кадр данных, и передаёт его в сеть. В противном случае, если уровень приоритета кадра меньше значения зарезервированного приоритета, маркер направляется по кольцу к следующему узлу.
В процессе передачи маркера и кадра данных по кольцу каждый узел, принимая их, проверяет кадр на наличие ошибок и при их обнаружении устанавливает соответствующий признак ошибки, в соответствии с которым все остальные узлы игнорируют передаваемый кадр и просто ретранслируют его узлу-отправителю. Кроме того, каждый узел, имеющий данные для передачи, может в поле резервирования приоритета кадра или маркера установить уровень приоритета ожидающего кадра данных, если этот приоритет больше, чем значение, находящееся в этом поле и записанное предшествующими узлами. В конечном результате, кадр данных, вернувшийся после полного оборота по кольцу вузел-отправитель, будет иметь в поле резервирования приоритета значение, соответствующее максимальному уровню приоритета среди всех кадров, готовых к передаче.
Таким образом, в ЛВС TokenRing реализуется приоритетное управление трафиком, причём столкновения кадров невозможны, поскольку в каждый момент времени в сети передаётся только один кадр.
При передаче небольших кадров, например запросов на чтение файла, возникают дополнительные непроизводительные задержки на время, необходимое для полного оборота кадра по сети через множество станций и в течение которого сеть недоступна для передачи других кадров. Узел после передачи кадра мог бы отправить в ЛВС некоторое количество символов до возвращения в него отправленного кадра: от 50 до 100 символов в ЛВС со скоростью 4 Мбит/с и до 400 символов в ЛВС со скоростью 16 Мбит/с.
Для увеличения производительности сети в TokenRing со скоростью 16 Мбит/с используется так называемый режим ранней передачи маркера (EarlyTokenRelease - ETR), при котором узел передает маркер следующему узлу сразу после передачи своего кадра. Такая возможность обусловлена тем, что сеть TokenRing состоит из набора независимых межкомпьютерных связей, а не представляет собой единый кабель, проходящий через все компьютеры. С точки зрения передачи сигналов кадр от узла идет только до ближайшего соседа.
При инициализации ЛВС TokenRing одна из рабочих станций назначается в качестве активного монитора, на который возлагаются дополнительные контрольные функции в кольце:
При выходе активного монитора из строя, назначается новый активный монитор из множества других PC. В качестве монитора автоматически может быть назначена станция, имеющая, например, наибольший МАС-адрес.
2.5 Передача маркера
TokenRing и IEEE 802.5 являются главными примерами сетей с передачей маркера. Сети с передачей маркера перемещают по сети небольшой блок данных, называемый маркером. Владение этим маркером гарантирует право передачи. Если узел, принимающий маркер, не имеет информации для отправки, он просто переправляет маркер к следующей конечной станции. Каждая станция может удерживать маркер в течение определенного максимального времени (по умолчанию — 10 мс).
Данная технология предлагает вариант решения проблемы коллизий, которая возникает при работе локальной сети. В технологии Ethernet, такие коллизии возникают при одновременной передаче информации несколькими рабочими станциями, находящимися в пределах одного сегмента, то есть использующих общий физический канал данных.