Автор работы: Пользователь скрыл имя, 24 Января 2013 в 19:13, дипломная работа
Средства общения между людьми (средства связи) непрерывно совершенствуются в соответствии с изменениями условий жизни, развитием культуры и техники. Сегодня средства связи стали неотъемлемой частью производственного процесса и нашего быта. Современные системы связи должны не только гарантировать быструю обработку и высокую надежность передачи информации, но и обеспечивать выполнение этих условий наиболее экономическим способом. Высокая стоимость линий связи обусловливает разработку систем и методов, позволяющих одновременно передавать по одной линии связи большое число независимых сообщений — многоканальных систем передачи.
Постановка задачи на проектирование 11
Обоснование проекта 12
Оптоволоконные системы передачи 13
Проблемы синхронизации. Кодирование данных в канале. 13
Мультиплексирование с временным разделением канала. 13
Сети SDH 15
Синхронная цифровая иерархия. 17
Сигналы PDH 27
Оборудование передачи 30
Функциональная схема оборудования SL-4 30
Линейное оборудование СЦИ 32
Линейное оборудование СЦИ SL-4 32
Передающая среда 33
Структура передач тракта, оптический диапазон 34
Применение в сетях передачи информации 36
Контроль, аварийная сигнализация, управление 37
Организация управления сетью 38
Каналы передачи данных и служебной информации 40
Каналы передачи данных DCCr 42
Передача к оборудованию мониторинга 47
Рассчет и выбор среды передачи 58
Расчет параметров волоконного световода 58
Расчет параметров волокна и выбор оптического кабеля 60
Лучевой анализ распространения излучения в волокне 62
Оптическое волокно TrueWave RS 65
Тип кабеля 66
Расчет потерь в оптическом кабеле 68
Характеристики приёмопередатчика 70
Расчет максимальной длины участка регенерации по затуханию 71
Хроматическая дисперсия волокна 72
5.10 Расчет длины участка регенерации по дисперсии 78
5.11 Расчет помехозащищенности некогерентного ВОСП 79
5.12 Расчет порога чуствительности ПРОМ 71
5.13 Надежность ВОСП 81
5.14 Расчет показателей состояния оборудования 83
5.15 Программа на алгоритмическом языке Delphi для реализации расчетов показателей линии связи 58
Безопасность жизнедеятельности 95
Анализ условий труда при прокладке кабеля 95
Анализ условий труда при эксплуатации линии связи 102
7. Бизнес-план 117
7.1 Резюме 117
7.2 Анализ идеи 117
7.3 Продукт 118
7.4 Анализ рынка 119
7.5 Расчет штата 123
7.6 Эксплуатационные затраты 124
7.7 Расчет дохода и срока окупаемости 127
Заключение 130
Список литературы 131
Приложение 133
Средства общения между людьми (средства связи) непрерывно совершенствуются в соответствии с изменениями условий жизни, развитием культуры и техники. Сегодня средства связи стали неотъемлемой частью производственного процесса и нашего быта. Современные системы связи должны не только гарантировать быструю обработку и высокую надежность передачи информации, но и обеспечивать выполнение этих условий наиболее экономическим способом. Высокая стоимость линий связи обусловливает разработку систем и методов, позволяющих одновременно передавать по одной линии связи большое число независимых сообщений — многоканальных систем передачи.
Системы передачи с ЧРК нашли широкое распространение. Они относительно просты в эксплуатации, имеют достаточно высокую надежность работы, хорошее качество передачи сигналов и обеспечивают необходимую дальность связи. Одним из основных недостатков этих систем является относительно низкая защищенность сигнала от помех, причем с увеличением протяженности магистрали защищенность уменьшается, т.е. с увеличением длины связи помехи накапливаются.
Кроме систем с ЧРК существуют системы передачи с временным разделением каналов (ВРК), когда осуществляется поочередная передача сигналов по линии связи от различных источников сообщений, полоса линейного тракта во время передачи сигналов каждого источника используется полностью
Интенсивное развитие цифровых
систем передачи (ЦСП), которое наблюдается
в настоящее время в
а) высокая помехоустойчивость. Представление информации в цифровой форме, то есть в виде последовательности символов с малым числом разрешенных значений и детерминированной частотой следования, позволяет осуществлять регенерацию этих символов при передаче их по линии связи, что резко снижает влияние помех и искажений на качество передачи информации. В результате обеспечивается возможность использования ЦСП на линиях связи, на которых аналоговые применяться не могут. Так, цифровые методы передачи весьма эффективны при передаче по волоконно-оптическим линиям, отличающимся высоким уровнем дисперсионных искажений и нелинейностью электронно-оптических и оптоэлектронных преобразователей;
б) слабая зависимость качества передачи от длины линии связи. В пределах каждого регенерационного участка искажения передаваемых сигналов оказываются ничтожными. Длина регенерационного участка и оборудование регенератора при передаче сигналов на большие расстояния остаются практически такими же, как и в случае передачи на малые расстояния. Так, при увеличении длины линии в 100 раз для сохранения качества передачи информации неизменным достаточно уменьшить длину участка регенерации лишь на 2-3 %;
в) стабильность параметров каналов ЦСП. Стабильность параметров каналов (остаточного затухания, частотной характеристики, нелинейных искажений) определяются в основном устройствами обработки сигналов в аналоговой форме. Поскольку такие устройства составляют незначительную часть аппаратурного комплекса цифровых систем передачи, стабильность параметров каналов в таких системах значительно выше, чем в аналоговых системах. Этому способствует также отсутствие в цифровых системах с ВРК влияния загрузки систем передачи в целом на параметры отдельного канала. Кроме того, при ВРК обеспечивается идентичность параметров всех каналов, что также способствует стабильности характеристик каналов сети связи, тогда как в системах с ЧРК параметры последних зависят от их размещения в линейном спектре системы передачи;
г) эффективность использования
пропускной способности каналов
для передачи дискретных сигналов.
Эффективное использование
д) более простая математическая обработка передаваемых сигналов. Цифровая форма представления информации позволяет производить математическую обработку сигналов, направленную как на устранение избыточности в исходных сигналах, так и на перекодирование передаваемых сигналов;
е) возможность построения цифровой сети связи. Цифровые системы передачи в сочетании с оборудованием коммутации цифровых сигналов являются основой цифровой сети связи, в которой передача, транзит и коммутация сигналов осуществляются в цифровой форме. Отношение сигнал-шум, обеспечиваемое в оборудовании транзита и коммутации, является достаточно высоким. Следовательно, параметры каналов практически не зависят от структуры сети, что обеспечивает возможность построения гибкой разветвленной сети связи, обладающей высокой надежностью;
ж) высокие технико-экономические показатели. Большой удельный вес цифрового оборудования в аппаратурном комплексе цифровых систем передачи определяет особенности изготовления, настройки и эксплуатации таких систем. Передача и коммутация сигналов в цифровой форме позволяют реализовывать весь аппаратурный комплекс цифровой сети на электронной основе с широким применением цифровых интегральных схем. Это позволяет резко уменьшать трудоемкость изготовления оборудования, добиваться высокой степени унификации узлов оборудования, значительно снижать его стоимость, потребляемую энергию и габаритные размеры. Высокая стабильность параметров каналов ЦСП устраняет необходимость регулировки узлов аппаратуры, в частности узлов линейного тракта в условиях эксплуатации, что существенно повышает технико-экономические показатели цифровых систем. Высокая степень унификации узлов также упрощает эксплуатацию систем и повышает надежность оборудования.
Из вышеизложенного видно, что цифровые системы передачи с ВРК обладают более высокими технико-экономическими показателями по сравнению с другими системами, и на сегодняшний день нашли очень широкое применение.
Основной цифровой канал.
Внедрение систем цифровой
телефонии вызвало
а) проанализировать состояние связи на участке и привести варианты ее модернизации;
б) выбрать аппаратуру передачи и привести ее технические характеристики;
в) выбрать тип оптического
г) рассчитать дисперсионные свойства оптоволокна и определить фактическую дисперсию и затухание сигнала в линии, рассчитать по этим данным длину регенерационного участка и число регенераторов на трассе;
д) выбрать и описать
е) проанализировать факторы, влияющие на безопасность труда персонала при сооружении и эксплуатации сети связи, сделать расчет необходимых параметров (освещенность рабочего помещения, заземление, устойчивость строительной техники и т.д.);
ж) сделать расчет по экономическому
обоснованию проекта и
2 ОБОСНОВАНИЕ ПРОЕКТА
Использование на
магистральном участке сети
Двоичные последовательности
при посылке в линию связи
кодируются последовательностью импульсов
и пауз. Передача и прием этих
последовательностей
В цифровой связи для передачи нескольких
цифровых потоков по одной линии
связи, как и в аналоговых системах,
применяется
С помощью этой битовой последовательности, выделяя ее как маркер, принимающая аппаратура может привязаться к началу каждого кадра в цифровом потоке. Этот вид синхронизации называют кадровой или цикловой синхронизацией. В цифровых системах несколько кадров объединяют в структуру, называемую сверхкадром (или сверхциклом, по-английски super-frame). Для правильного приема таких структур, кроме тактовой и кадровой синхронизации, необходима еще и сверхкадровая синхронизация.
3.3 Сети SDH
Терминальный мультиплексор.
Оконечное устройство сети с некоторым числом каналов доступа (электрических и оптических). Терминальные мультиплексоры [3] имеют один или два оптических входа / выхода, называемых агрегатными. Два входа / выхода используются для повышения надежности, которая обеспечивается схемой резервирования на 100% линии и групповой части аппаратуры.
Отличается от ТМ наличием двух или четырёх оптических агрегатных входов / выходов при том же числе каналов доступа, что и в ТМ. При этом в ADM различают западный и восточный агрегатные порты (интерфейсы). Мультиплексор ADM [3] может выполнять функции кроссового коммутатора для цифровых потоков определенных ступеней мультиплексирования (VC12, VC3, VC4). Коммутация может осуществляться путем проключения цифровых трактов или перестановками временных позиций.
Информация о работе Проектирование волоконно-оптической линий связи