Автор работы: Пользователь скрыл имя, 17 Августа 2014 в 14:28, реферат
Цифровые осциллографы выпускаются либо в виде самостоятельных приборов, либо в виде приставки к ПК. Устройства на основе ПК относятся к новому направлению в измерительной технике – виртуальные приборы. Теперь специалисту достаточно подключить к компьютеру дополнительное устройство – модуль цифрового осциллографа, для того чтобы начать измерения и анализ физической величины. При этом программная часть виртуального прибора эмулирует переднюю управляющую панель стационарного измерительного устройства. С помощью мыши и клавиатуры осуществляется управление прибором, специальными программами обработка поступившей информации, а также её хранение на накопителе на жёстком диске.
Введение………………………………………………………………………….. 3
Структура и принцип действия цифрового осциллографа…………….…….... 5
Заключение……………………………………………………………......……… 8
Список использованных источников…………
Содержание.
Введение…………………………………………………………
Структура и принцип действия цифрового осциллографа…………….…….... 5
Заключение……………………………………………………
Список использованных источников………………………………………….. 10
Введение.
В ходе развития технологии микроэлектроники происходила миниатюризация электронных схем, и появились сверхбольшие интегральные схемы (СБИС). Массовое производство СБИС привело к их удешевлению. Одним из дешёвых и миниатюрных устройств является микроконтроллер (МК). Микроконтроллер – это СБИС, содержащая на одном кристалле процессор, ПЗУ, ОЗУ, последовательный или параллельный интерфейс связи, таймеры, схему прерываний и другие периферийные устройства. Таким образом, на одной интегральной схеме можно реализовать множество различных устройств, в которых требуется управлять каким-то процессом. Причём совершенствование технологии изготовления СБИС привело к повышению их производительности, и микроконтроллеры могут достаточно быстро реагировать на событие и обрабатывать его.
В настоящее время бурно развиваются цифровые приборы. Причём из-за лучших характеристик цифровые приборы вытесняют аналоговые приборы.
Цифровые осциллографы выпускаются либо в виде самостоятельных приборов, либо в виде приставки к ПК. Устройства на основе ПК относятся к новому направлению в измерительной технике – виртуальные приборы. Теперь специалисту достаточно подключить к компьютеру дополнительное устройство – модуль цифрового осциллографа, для того чтобы начать измерения и анализ физической величины. При этом программная часть виртуального прибора эмулирует переднюю управляющую панель стационарного измерительного устройства. С помощью мыши и клавиатуры осуществляется управление прибором, специальными программами обработка поступившей информации, а также её хранение на накопителе на жёстком диске.
Теми же возможностями обладают осциллографы с ЖКД (жидкокристаллическим дисплеем). Все возможности связанные с автоматизаций измерений встроены в цифровой осциллограф.
В настоящее время на рынке измерительной техники присутствует множество производителей цифровых запоминающих осциллографов (ЦЗО). Наиболее преуспевающие производители в России: «АКТАКОМ», ОАО «Руднёв - Шиляев», ЗАО «Компания Сигнал». Лидирующие производители за рубежом: компании «Tektronix», «Hitachi-Denshi», «Agilent Technologies», «LeCroy», «GaGe Applied Technologies», Good Will instrument Co. Ltd, фирма «Chauvin Arnoux», корпорация «Fluke».
ЦЗО используются для исследовательских работ или для тестирования, наладки, настройки электронных устройств.
Структура и принцип действия цифрового осциллографа.
Цифровой осциллограф — это конструктивное объединение аналогового осциллографа и электронно-вычислительной машины. С его помощью можно не только отображать характеристику напряжения в реальном времени, но и выполнять различные математические операции: складывать и вычитать сигналы в разных каналах, растягивать во времени фрагменты записанного в память сигнала, определять частотный спектр сигнала путём применения быстрого преобразования Фурье и прочее.
Рис. 1. Упрощенная структурная схема цифрового осциллографа (ЦО)
МУ – масштабирующее устройство (усилитель и делитель напряжения);
АЦП – аналого-цифровой преобразователь;
ОЗУ – оперативное запоминающее устройство;
К – контроллер;
ЗУ – запоминающее устройство;
Э – экран;
ОУ – органы управления (кнопки, ручки).
На рис. 1 в предельно упрощенном виде показана структурная схема цифрового осциллографа (ЦО).
Пройдя через МУ, входное напряжение u(t) преобразуется АЦП в дискретную последовательность кодовых слов Ni , отображающих мгновенные значения ui этого напряжения. Каждое новое кодовое слово записывается в ОЗУ. При этом все предыдущие записанные отсчёты сдвигаются на одну ячейку (регистр сдвига), а самый первый N1 исчезает, как бы «выталкивается». Если ОЗУ состоит из М ячеек, то в нём, постоянно обновляясь, содержится М последних, «свежих», кодовых слов. Так продолжается до тех пор, пока не будет выполнено некое заданное условие, например, когда какое-либо ui впервые превысит заданный оператором уровень («запуск по уровню»). После этого содержимое некоторого количества ячеек ОЗУ переписывается в запоминающее устройство ЗУ, входящее в состав контроллера К.
Каждой ячейке ЗУ соответствует точка на экране по цвету отличающаяся от фона. Её абсциссу определяет номер ячейки, а ординату кодовое слово Ni, находящееся в этой ячейке.
Для хорошего изображения сигнала на экране вполне достаточно 2 точки на 1 мм. Средних размеров экран имеет высоту 100 мм и ширину 120 мм. Следовательно, на экране должны располагаться 200 × 240 = 48 000 точек или более.
Таким образом, для формирования хорошего изображения АЦП должен иметь не менее 8 двоичных разрядов (256 точек по вертикали) и ЗУ должно содержать 256 ячеек.
Но количество ячеек ОЗУ может быть гораздо больше. Зачем?
ЦО позволяет делать замечательную вещь – запоминать в ОЗУ очень много кодовых слов, а потом «вытягивать» их порциями, соответствующими ширине экрана. В аналоговых осциллографах это, конечно, невозможно. Для обозначения запаса по оси времени («глубина памяти») иногда пользуются такой оценкой длительности сигнала, данные о котором записаны в ОЗУ: «число экранов». Например, «8 экранов» означает, что объём памяти ОЗУ не 256, а 2048 ячеек, в которых записано 2048 кодовых слов Ni. Каждое Ni – это 8-разрядный код, т.е. один байт, т.ч. «8 экранов» – это объём памяти в 2 килобайта. Можно вообразить очень широкий экран-ленту – в 8 раз шире натурального, но такой же высоты. На такой ленте было бы записано изображение всего сигнала. Длина этой ленты около одного метра.
Ещё одно принципиальное отличие от аналоговых осциллографов состоит в том, что в ЦО можно видеть предысторию сигнала до появления импульса запуска. Это называют «предзапуском». Кодовые слова переписываются из ОЗУ в ЗУ так, что в момент появления импульса запуска первой ячейкой ЗУ будет та, что даёт точку на вертикальной линии, проходящей через центр экрана, последующие точки располагаются направо от неё, предыдущие – налево. Положение первой ячейки можно смещать влево или вправо от центра и, тем самым, соответственно, уменьшать или увеличивать видимый интервал предыстории.
Частоту дискретизации (частоту «выборок») можно изменять в широких пределах, что соответствует изменению масштаба по горизонтали и аналогично изменению скорости развёртки в аналоговых осциллографах.
Для изменения масштаба по вертикали, как и в аналоговых осциллографах, можно изменять коэффициенты усиления или деления соответственно входного усилителя или делителя напряжения.
Заключение.
Таким образом, можно выделить следующие преимущества цифрового осциллографа:
- высокая точность измерений;
- яркий хорошо сфокусированный экран на любой скорости развёртки;
- возможность отображения сигнала до момента запуска;
- возможность остановки обновления экрана на произвольное время;
- возможность детектирования импульсных помех;
- автоматические средства измерения параметров сигналов;
- возможность подключения принтера для создания отчётов измерений;
- возможность статистической обработки сигнала;
- средства самодиагностики и самокалибровки;
- резко очерченные контуры изображения сигнала;
- возможность исследовать детально переходные процессы;
- считывание предварительно записанных данных;
- широкие аналитические
возможности и упрощённая
- возможность сравнения предварительно записанных данных с текущими.
Благодаря выше изложенным преимуществам цифровые осциллографы заняли прочные позиции в производстве контрольно – измерительных приборов и почти вытеснили из рынка аналоговые осциллографы. По данным компании Frost & Sullivan, доля продаж цифровых осциллографов на мировом рынке в 2007 году составляла 87,4%, в то время как для аналоговых приборов названа цифра 2,8%. На сегодняшний день в мире существует немало фирм, которые занимаются разработкой цифровых осциллографов достаточно давно и предлагают хорошую, сертифицированную, многофункциональную продукцию. Но с потребительской точки зрения весомым недостатком этих проборов является достаточно высокая их стоимость. В этом ракурсе вопроса потенциальные покупатели обращают внимание на, возможно, менее известные бренды, которые, тем не менее, могут предложить хорошее качество.
Список использованных источников.
Информация о работе Структура и принцип действия цифрового осциллографа