Автор работы: Пользователь скрыл имя, 16 Декабря 2013 в 20:18, реферат
В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.
В отличие от
энергии, которая однажды использованная
организмом, превращается в тепло
и теряется для экосистемы, вещества
циркулируют в биосфере, что и
называется биогеохимическими
Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.
Существует
закон глобального замыкания
биогеохимического круговорота в биосфере,
действующий на всех этапах её развития,
как и правило увеличения замкнутости
биогеохимического круговорота в ходе
сукцессии. В процессе эволюции биосферы
увеличивается роль биологического компонента
в замыкании биогеохимического круговорота.
Ещё большую роль на биогеохимический
круговорот оказывает человек. Но его
роль осуществляется в противоположном
направлении. Человек нарушает сложившиеся
круговороты веществ, и в этом проявляется
его геологическая сила, разрушительная
по отношению к биосфере на сегодняшний
день.
Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.
В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах – наиболее древних и консервативных).
Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.
Надежды на преодоление экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных ресурсов утилизируется в конечном продукте.
Теоретически
замкнутые циклы превращения
вещества возможны. Однако полная и
окончательная перестройка
Газообразный азот возникает в результате реакции окисления аммиака, образующегося при извержении вулканов и разложении биологических отходов:
4NH3 + 3O2 ® 2N2 + 6H2O.
Круговорот азота – один из самых сложных, но одновременно самых идеальных круговоротов. Несмотря на то что азот составляет около 80% атмосферного воздуха, в большинстве случаев он не может быть непосредственно использован растениями, т.к. они не усваивают газообразный азот. Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла.
Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии – фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты.
Неорганическим путём нитраты образуются и в атмосфере в результате электрических разрядов во время гроз.
Самые активные потребители азота – бактерии на корневой системе растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее образуются отходы в виде погибших организмов, являющихся объектами жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так возникает новый цикл круговорота. Существуют организмы, способные превращать аммиак в нитриты, нитраты и в газообразный азот.
Биологическая активность организмов дополняется промышленными способами получения азотосодержащих органических и неорганических веществ, многие из которых применяются в качестве удобрений для повышения продуктивности и роста растений.
Антропогенное влияние на круговорот азота определяется следующими процессами:
В круговороте
соединений азота ключевое значение принадлежит микроорганизмам:
азотфиксаторам, нитрификаторам и денитрификаторам.
Другие же организмы оказывают влияние
на круговорот азота лишь после того, как
он войдет в состав их клеток. Как известно,
бобовые и представители некоторых родов
других сосудистых растений (например,
ольха, араукария, лох) фиксируют азот
с помощью бактерий-симбионтов. То же наблюдается
и у некоторых лишайников, фиксирующих
азот с помощью симбиотических сине-зеленых
водорослей. Очевидно, что биологическая
фиксация молекулярного азота свободноживущими
и симбиотическими организмами происходит
и в автотрофном, и в гетеротрофном звеньях
экосистем.
Из огромного запаса азота в атмосфере
и осадочной оболочке литосферы в круговороте
его участвует только фиксированный азот,
усваиваемый живыми организмами суши
и океана. В категорию обменного фонда
этого элемента входят: азот годичной
продукции биомассы, азот биологической
фиксации бактериями и другими организмами,
ювенильный (вулканогенный) азот, атмосферный
(фиксированный при грозах) и техногенный
Нетрудно заметить, что, за исключением
растительности тундры, где содержание
азота и зольных элементов примерно одинаково,
в растительности почти всех других типов
масса азота в 2... 3 раза меньше массы зольных
элементов. Количество элементов, оборачивающихся
в течение года (т.е. емкость биологического
круговорота), наибольшее в тропических
лесах, затем в черноземных степях и широколиственных
лесах умеренного пояса (дубравах).
Азот — одно из самых распространенных веществ в биосфере, узкой оболочке Земли, где поддерживается жизнь. Так, почти 80% воздуха, которым мы дышим, состоит из этого элемента. Основная часть атмосферного азота находится в свободной форме, при которой два атома азота соединены вместе, образуя молекулу азота — N2. Из-за того, что связи между двумя атомами очень прочные, живые организмы не способны напрямую использовать молекулярный азот — его сначала необходимо перевести в «связанное» состояние. В процессе связывания молекулы азота расщепляются, давая возможность отдельным атомам азота участвовать в химических реакциях с другими атомами, например с кислородом, и таким образом мешая им вновь объединиться в молекулу азота. Связь между атомами азота и другими атомами достаточно слабая, что позволяет живым организмам усваивать атомы азота. Поэтому связывание азота — чрезвычайно важная часть жизненных процессов на нашей планете.
Круговорот азота представляет собой ряд замкнутых взаимосвязанных путей, по которым азот циркулирует в земной биосфере. Рассмотрим сначала процесс разложения органических веществ в почве. Различные микроорганизмы извлекают азот из разлагающихся материалов и переводят его в молекулы, необходимые им для обмена веществ. При этом оставшийся азот высвобождается в виде аммиака (NH3) или ионов аммония (NH4+). Затем другие микроорганизмы связывают этот азот, переводя его обычно в форму нитратов (NO3–). Поступая в растения (и в конечном счете попадая в организмы живых существ), азот участвует в образовании биологических молекул. После гибели организма азот возвращается в почву, и цикл начинается снова. Во время этого цикла возможны как потери азота — когда он включается в состав отложений или высвобождается в процессе жизнедеятельности некоторых бактерий (так называемых денитрифицирующих бактерий), — так и компенсация этих потерь за счет извержения вулканов и других видов геологической активности.
Представим, что биосфера состоит из двух сообщающихся резервуаров с азотом — огромного (в нем находится азот, содержащийся в атмосфере и океанах) и совсем маленького (в нем находится азот, содержащийся в живых существах). Между этими резервуарами есть узкий проход, в котором азот тем или иным способом связывается. В нормальных условиях азот из окружающей среды попадает через этот проход в биологические системы и возвращается в окружающую среду после гибели биологических систем.
Приведем несколько цифр. В атмосфере азота содержится примерно 4 квадрильона (4·1015) тонн, а в океанах — около 20 триллионов (20·1012) тонн. Незначительная часть этого количества — около 100 миллионов тонн — ежегодно связывается и включается в состав живых организмов. Из этих 100 миллионов тонн связанного азота только 4 миллиона тонн содержится в тканях растений и животных — все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу.
Главный поставщик связанного азота в природе — бактерии: благодаря им связывается приблизительно от 90 до 140 миллионов тонн азота (точных цифр, к сожалению, нет). Самые известные бактерии, связывающие азот, находятся в клубеньках бобовых растений. На их использовании основан традиционный метод повышения плодородия почвы: на поле сначала выращивают горох или другие бобовые культуры, потом их запахивают в землю, и накопленный в их клубеньках связанный азот переходит в почву. Затем поле засевают другими культурами, которые этот азот уже могут использовать для своего роста.
Некоторое количество азота
переводится в связанное
Таким образом, в результате естественных природных процессов связывается от 100 до 150 миллионов тонн азота в год.
В ходе человеческой деятельности тоже происходит связывание азота и перенос его в биосферу (например, все то же засевание полей бобовыми культурами приводит ежегодно к образованию 40 миллионов тонн связанного азота). Более того, при сгорании ископаемого топлива в электрогенераторах и в двигателях внутреннего сгорания происходит разогрев воздуха, как и в случае с разрядом молнии. Примерно 20 миллионов тонн азота в год связывается при сжигании природного топлива.
Но больше всего связанного азота человек производит в виде минеральных удобрений. Как это часто бывает с достижениями технического прогресса, технологией связывания азота в промышленных масштабах мы обязаны военным. В Германии перед Первой мировой войной был разработан способ получения аммиака (одна из форм связанного азота) для нужд военной промышленности. Недостаток азота часто сдерживает рост растений, и фермеры для повышения урожайности покупают искусственно связанный азот в виде минеральных удобрений. Сейчас для сельского хозяйства каждый год производится чуть больше 80 миллионов тонн связанного азота (заметим, что он употребляется не только для выращивания пищевых культур — пригородные лужайки и сады удобряют им же).
Суммировав весь вклад
человека в круговорот азота, получаем
цифру порядка 140 миллионов тонн в год.
Примерно столько же азота связывается
в природе естественным образом. Таким
образом, за сравнительно короткий период
времени человек стал оказывать существенное
влияние на круговорот азота в природе.
Каковы будут последствия? Каждая экосистема
способна усвоить определенное количество
азота, и в последствия этого в целом благоприятны —
растения станут расти быстрее. Однако
при насыщении экосистемы азот начнет
вымываться в реки. Эвтрофикация (